【题目】已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F。
(1)图中哪条线段和BE相等?为什么?
(2)若AB=6,AC=3,求BE的长。
【答案】(1)BE=CF,理由见解析;(2)
【解析】
(1)连CD、BD,如图,根据角平行线的性质定理得到DE=CF,根据线段垂直平分线的性质得CD=BD,则可利用“HL“证明Rt△CDF≌Rt△BDE,从而得到BE=CF;
(2)先证明Rt△ADF≌Rt△ADE得到AE=AF,设BE=CF=x,则AE=6-x,而AE=AF=AC+CF=3+x,则3+x=6-x,然后解方程求出x即可.
(1)BE=CF.理由如下:
连CD、BD,如图,
∵AD平分∠BAE,DE⊥AB,DF⊥AC,
∴DE=CF,
又∵DG垂直平分BC,
∴CD=BD,
在Rt△CDF和Rt△BDE中
,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF;
(2)在Rt△ADF和Rt△ADE中,
∴Rt△ADF≌Rt△ADE(HL),
∴AE=AF,
设BE=CF=x,则AE=6-x,
∵AF=AC+CF=3+x,
∴3+x=6-x,解得x=,
即BE=.
科目:初中数学 来源: 题型:
【题目】如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课外研究小组为了解学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名同学的兴趣爱好每人只能选其中一项,并将调查结果绘制成统计图,请根据图中提供的信息解答下列问题:
在这次考察中一共调查了______名学生,请补全条形统计图;
被调查同学中恰好有4名学来自初一2班,其中有2名同学选择了篮球,有2名同学选择了乒乓球,曹老师打算从这4名同学中选择两同学了解他们对体育社团的看法,请用列表法或画树状图法,求选出的两人恰好都选择同一种球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿带城中挂,人在画中游”,张平和王亮同学周末相约骑行于“步移景异,心旷神怡”的温江田园绿道,他们从同一地方同时骑自行车出发(骑行过程中速度保持不变),最后同时到达了同一个地方. 如图刻画了他们离出发点的路程(单位:米)与出发后的时间(单位:分钟)之间的关系. 已知张平中途两次休息时间相同,三段骑行时间也分别相同;王亮中途休息一次,两段骑行时间相同. 张平总的休息时间比王亮的休息时间多分钟. 请结合图中信息解答下列问题:
(1)在这次骑行活动中,他们的骑行路程都是多少米?
(2)求出张平和王亮的骑行速度分别是多少米/分钟?
(3)求出王亮出发后第一次追上张平的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:
;;方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为;若点在该抛物线上,则.
其中正确的有
A. 5个 B. 4个 C. 3个 D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.
(1)直线AB与直线CD是否平行,说明你的理由;
(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.
①当点G在点F的右侧时,若β=60°,求α的度数;
②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备租用一批汽车,现有甲、乙两种客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.求1辆甲种客车和1辆乙种客车的租金分别是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
①请画出△ABC关于y轴对称的△A1B1C1;
②请画出△ABC关于x轴对称的△A2B2C2的各点坐标;
③在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com