【题目】如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.
【答案】解:如图,将△CPB绕点C顺时针旋转90°,得△CP'A,
则P'C=PC=2,P'A=PB=1. ∠PCP'=90°, ∠BPC=∠AP'C ,
∴∠CP'P=45° ;
连接PP',
∴PP'2=22+22=8.
又P'A=1,PA=3,而PP'2+P'A2=8+1=9,PA2=9,
∴PP'2+P'A2=PA2.
∴∠AP'P=90°.
又∠CP'P=45°,
∴∠BPC=∠CP'A=135°.
【解析】如图,将△CPB绕点C顺时针旋转90°,得△CP'A,根据旋转的性质知, P'C=PC=2,P'A=PB=1, ∠PCP'=90°, ∠BPC=∠AP'C ,根据等腰直角三角形的性质得出∠CP'P=45° , 连接PP',根据勾股定理得出PP'2=22+22=8. 根据勾股定理的逆定理PP'2+P'A2=PA2 , 从而得出∠AP'P=90°,根据角的和差及等量代换得出∠BPC=∠CP'A=135°.
科目:初中数学 来源: 题型:
【题目】如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为_______。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在坡顶处的同一水平面上有一座古塔,数学兴趣小组的同学在斜坡底处测得该塔的塔顶的仰角为,然后他们沿着坡度为的斜坡攀行了米,在坡顶处又测得该塔的塔顶的仰角为.求古塔的高度.(结果精确到米,参考数据: , , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程2x2﹣2x﹣k=0有解.
其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】温家宝总理强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在平面直角坐标系中.
(1)若把△ABC向上平移2个单位长度,再向左平移1个单位长度得到△A1B1C1,写出A1,B1,C1的坐标;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com