精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.
(1)求证:AD=AF;
(2)求证:BD=EF;
(3)试判断四边形ABNE的形状,并说明理由.

【答案】
(1)证明:∵AB=AC,∠BAC=90°,

∴∠ABC=∠ACB=45°,

∴∠ABF=135°,

∵∠BCD=90°,

∴∠ABF=∠ACD,

∵CB=CD,CB=BF,∴BF=CD,

在△ABF和△ACD中,

∴△ABF≌△ACD(SAS),

∴AD=AF


(2)证明:由(1)知,AF=AD,△ABF≌△ACD,

∴∠FAB=∠DAC,

∵∠BAC=90°,

∴∠EAB=∠BAC=90°,

∴∠EAF=∠BAD,

在△AEF和△ABD中,

∴△AEF≌△ABD(SAS),

∴BD=EF


(3)解:四边形ABNE是正方形;理由如下:

∵CD=CB,∠BCD=90°,

∴∠CBD=45°,

由(2)知,∠EAB=90°,△AEF≌△ABD,

∴∠AEF=∠ABD=90°,

∴四边形ABNE是矩形,

又∵AE=AB,

∴四边形ABNE是正方形


【解析】(1)由等腰直角三角形的性质得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,证出BF=CD,由SAS证明△ABF≌△ACD,即可得出AD=AF;(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,证出∠EAF=∠BAD,由SAS证明△AEF≌△ABD,得出对应边相等即可;(3)由全等三角形的性质得出得出∠AEF=∠ABD=90°,证出四边形ABNE是矩形,由AE=AB,即可得出四边形ABNE是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程有两个正整数根是正整数的三边a、b、c满足

求:的值;

的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4 ,则△CEF的面积是(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于下列结论: ①二次函数y=6x2 , 当x>0时,y随x的增大而增大.
②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.
③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.
其中,正确结论的个数是(
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD,ABDC,B=55°,1=85°,2=40°

(1)求∠D的度数;

(2)求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=∠COD=90°,∠BOC=34°.

(1)判断BOC与AOD之间的数量关系,并说明理由;

(2)若OE平分AOC,求EOC的余角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为(
A.1.5
B.2.5
C.2.25
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD是任意四边形,AC与BD交于点O.试说明:AC+BD> (AB+BC+CD+DA).

解:在△OAB中有OA+OB>AB,

在△OAD中有______________

在△ODC中有______________

在△________中有______________

∴OA+OB+OA+OD+OD+OC+OB+OC>AB+AD+CD+BC,

________________________

∴AC+BD> (AB+BC+CD+DA).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P的三顶点的距离之和的值为最小?

问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:

问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求的度数;

问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.

查看答案和解析>>

同步练习册答案