精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠AOB=∠COD=90°,∠BOC=34°.

(1)判断BOC与AOD之间的数量关系,并说明理由;

(2)若OE平分AOC,求EOC的余角的度数.

【答案】(1)BOC+∠AOD=360°﹣AOB﹣COD=180°;

(2)28°.

【解析】

(1)根据角之间的关系解答即可;
(2)根据角平分线的定义和互余解答即可.

(1)BOC与∠AOD之间的数量关系为∠BOC+AOD=180°,

因为∠AOB=COD=90°,AOB+BOC+COD+AOD=360°,

所以∠BOC+AOD=360°﹣AOB﹣COD=180°,

(2)因为∠AOB=90°,BOC=34°,

所以∠AOC=AOB+BOC=124°,

因为OE平分∠AOC,

所以∠E0C=AOE=AOC=62°,

所以∠EOC余角的度数为90°﹣E0C=28°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O是以原点为圆心, 为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )

A.3
B.4
C.6﹣
D.3 ﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)120分时,时钟的时针与分针的夹角是几度?

(2)在时钟上,7点到8点之间,时针和分针何时成30°的角?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10 海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为海里/小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.
(1)求证:AD=AF;
(2)求证:BD=EF;
(3)试判断四边形ABNE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.

(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线AB上一点O为端点作射线 OC使BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图1,若直角三角板DOE的一边OD放在射线OBCOE= °;

(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置OE恰好平分AOC请说明OD所在射线是BOC的平分线

(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时若恰好COD= AOEBOD的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:
(1)此次抽样调查的样本容量是
(2)补全频数分布直方图,并求扇形图中“15吨~20吨”部分的圆心角的度数.
(3)如果自来水公司将基本用水量定位每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

同步练习册答案