精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.

(1)求证:△PDQ是等腰直角三角形;
(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.

【答案】
(1)证明:连接AD

∵△ABC是等腰直角三角形,D是BC的中点

∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,

在△BPD和△AQD中,

∴△BPD≌△AQD(SAS),

∴PD=QD,∠ADQ=∠BDP,

∵∠BDP+∠ADP=90°

∴∠ADP+∠ADQ=90°,即∠PDQ=90°,

∴△PDQ为等腰直角三角形


(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:

∵∠BAC=90°,AB=AC,D为BC中点,

∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,

∴△ABD是等腰直角三角形,

当P为AB的中点时,DP⊥AB,即∠APD=90°,

又∵∠A=90°,∠PDQ=90°,

∴四边形APDQ为矩形,

又∵DP=AP= AB,

∴矩形APDQ为正方形(邻边相等的矩形为正方形).


【解析】(1)连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;(2)若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=2(x+1)2﹣3的对称轴是(
A.直线x=1
B.直线x=3
C.直线x=﹣1
D.直线x=﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:
如果我们规定一种运算为=ad﹣bc,例如:=2×5﹣4×3=﹣2,请按照这种运算的规定,解答下列问题:
(1)若=﹣2,求x的值;
(2)当x满足什么条件时,﹣1<≤4;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线L1的解析表达式为y=﹣3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1 , L2交于点C.

(1)求直线L2的解析表达式;
(2)求△ADC的面积;
(3)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 (2016辽宁营口第25题)已知:如图①,将D=60°的菱形ABCD沿对角线AC剪开,将ADC沿射线DC方向平移,得到BCE,点M为边BC上一点(点M不与点B、点C重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.

(1)①求证:ANB=AMC;

②探究AMN的形状;

(2)如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】钟面上的时刻是830分,此时时针和分针所成的角度是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某医药公司有一种药品共300箱,将其分配给批发部和零售部销售.批发部经理对零售部经理说:“如果把你们分得的药品让我们卖可得3500元.”零售部经理对批发部经理说:“如果把你们所分到的药品让我们卖,可卖得7500元.”若设零售部所得的药品是a箱,则:
(1)该药品的零售价是每箱多少元?
(2)该药品的批发价是每箱多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若三角形三个内角的比为1:2:3,则这个三角形是(
A.钝角三角形
B.锐角三角形
C.直角三角形
D.等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】省为了实现2015年全省森林覆盖率达到63%的目标,大力开展植树造林,已知2013年全省森林覆盖率为60.05%,设从2013年起该省森林覆盖率的年平均增长率为x,则可列方程为( )
A.60.05(1+2x)=63%
B.60.05(1+2x)=63
C.60.05(1+x)2=63%
D.60.05(1+x)2=63

查看答案和解析>>

同步练习册答案