精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.

(1)求抛物线解析式;
(2)如图2,当点F恰好在抛物线上时,求线段OD的长;

【答案】
(1)

解:如图1,

∵抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,

解得

∴抛物线解析式为y= x2+ x+3


(2)

解:如图2,∵点F恰好在抛物线上,C(0,3),

∴F的纵坐标为3,

把y=3代入y= x2+ x+3得,3= x2+ x+3;

解得x=0或x=4,

∴F(4,3)

∴OH=4,

∵∠CDE=90°,

∴∠ODC+∠EDH=90°,

∴∠OCD=∠EDH,

在△OCD和△HDE中,

∴△OCD≌△HDE(AAS),

∴DH=OC=3,

∴OD=4﹣3=1;


【解析】(1)利用待定系数法求得即可;(2)根据C的纵坐标求得F的坐标,然后通过△OCD≌△HDE,得出DH=OC=3,即可求得OD的长;(3)①先确定C、D、E、F四点共圆,根据圆周角定理求得∠ECF=∠EDF,由于tan∠ECF= = = ,即可求得tan∠FDE= ; ②连接CE,得出△CDE是等腰直角三角形,得出∠CED=45°,过D点作DG1∥CE,交直线l于G1 , 过D点作DG2⊥CE,交直线l于G2 , 则∠EDG1=45°,∠EDG2=45°,求得直线CE的解析式为y=﹣ x+3,即可设出直线DG1的解析式为y=﹣ x+m,直线DG2的解析式为y=2x+n,把D的坐标代入即可求得m、n,从而求得解析式,进而求得G的坐标.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正确的有( )

A.1个
B.2 个
C.3 个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.

(1)求证:四边形CMAN是平行四边形.
(2)已知DE=4,FN=3,求BN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.
你添加的条件是?并证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课间小明和小亮玩“剪刀、石头、布”游戏.游戏规则是:双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头,若双方出现相同手势,则算打平.若小亮和小明两人只比赛一局.
(1)请用树状图或列表法列出游戏的所有可能结果.
(2)求出双方打平的概率.
(3)游戏公平吗?如果不公平,你认为对谁有利?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2
其中正确结论是(  )

A.②④
B.①④
C.①③
D.②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC是⊙O的切线;
(2)求证:BC= AB;
(3)点M是 的中点,CM交AB于点N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y= 的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,
(1)求函数y= 和y=kx+b的解析式.
(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y= 的图象上一点P,使得SPOC=9.

查看答案和解析>>

同步练习册答案