精英家教网 > 初中数学 > 题目详情
10.在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,tan∠CBA=$\frac{1}{2}$.
(1)求该抛物线的表达式;
(2)设该抛物线的顶点为D,求四边形ACBD的面积;
(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.

分析 (1)由抛物线解析式和已知条件得出C和B的坐标,(0,3),OC=3,
把A(2,0)、B(6,0)分别代入y=ax2+bx+3得出方程组,解方程即可;
(2)把抛物线解析式化成顶点式得出顶点坐标,四边形ACBD的面积=△ABC的面积+△ABD的面积,即可得出结果;
(3)设点E的坐标为(x,$\frac{1}{4}$x2-2x+3),分两种情况:①当∠CBE=90°时;②当∠BCE=90°时;分别由三角函数得出方程,解方程即可.

解答 解:(1)∵当x=0时,∴C(0,3),OC=3,
在Rt△COB中,∵tan∠CBA=$\frac{1}{2}$,
∴$\frac{OC}{OB}$=$\frac{1}{2}$,
∴OB=2OC=6,
∴点B(6,0),
把A(2,0)、B(6,0)分别代入y=ax2+bx+3,得:$\left\{\begin{array}{l}{4a+2b+3=0}\\{36a+6b+3=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=\frac{1}{4}}\\{b=-2}\end{array}\right.$
∴该抛物线表达式为y=$\frac{1}{4}$x2-2x+3;
(2)∵y=$\frac{1}{4}$x2-2x+3=$\frac{1}{4}$(x-4)2-1
∴顶点D(4,-1),
∴四边形ACBD的面积=△ABC的面积+△ABD的面积=$\frac{1}{2}$×4×3+$\frac{1}{2}$×4×1=8;
(3)设点E的坐标为(x,$\frac{1}{4}$x2-2x+3),分两种情况:
①当∠CBE=90°时,
作EM⊥x轴于M,如图所示:
则∠BEM=∠CBA,
∴$\frac{BM}{EM}$=tan∠BEM=tan∠CBA=$\frac{1}{2}$,
∴EM=2BM,
即2(x-6)=$\frac{1}{4}$x2-2x+3,
解得:x=10,或x=6(不合题意,舍去),
∴点E坐标为(10,8);
②当∠BCE1=90°时,作E1N⊥y轴于N,
则∠E1CN=∠CBA,
∴$\frac{{E}_{1}N}{CN}$=tan∠E1CN=tan∠CBA=$\frac{1}{2}$,
∴CN=2E1N,
即2x=$\frac{1}{4}$x2-2x+3-3,
解得:x=16,或x=0(不合题意,舍去),
∴点E1坐标为(16,35);
综上所述:点E坐标为(10,8)或(16,35).

点评 本题考查了抛物线与x轴的交点、抛物线解析式的求法、三角函数的应用、解方程等知识;本题综合性强,有一定难度,求出抛物线解析式是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.计算1÷(-$\frac{1}{5}$)的结果是(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:5xy-(2x2-xy)+2(x2+3),其中x=1,y=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.某市为响应国家“厉行节约,反对浪费”号召,减少了对办公经费的投入.2014年投入3000万元预计2016年投入2430万元,则该市办公经费的年平均下降率为10%.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.在平面直角坐标系中,点P(-10,a)与点Q(b,13)关于原点对称,则a+b的值为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.若$\sqrt{x-\frac{\sqrt{3}}{3}}$+|y-$\sqrt{3}$|=0,那么(xy)2012的值为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)计算:4cos30°-$\frac{1}{2+\sqrt{3}}$-$\sqrt{27}$+(-$\frac{1}{3}$)-2
(2)解方程:x2-2x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.-2的相反数等于(  )
A.2B.-$\frac{1}{2}$C.±2D.$±\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点A、O、B在同一直线上,OD平分∠AOC,OE平分∠BOC.
(1)图中∠AOD的补角是∠BOD,∠BOE的补角是∠AOE;
(2)∠COD与∠EOC具有的数量关系是∠COD+∠EOC=90°;
(3)若∠AOC=62°18′,求∠COD和∠BOE的度数.

查看答案和解析>>

同步练习册答案