精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:,点在射线上,点...在射线上,...均为等边三角形,若,则的边长为__________

【答案】

【解析】

根据等腰三角形的性质以及平行线的性质得出A1B1A2B2A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4aA4B4=8B1A2=8aA5B5=16B1A2进而得出答案

解:如图

∵△A1B1A2是等边三角形,
A1B1=A2B1,∠3=4=12=60°
∴∠2=120°
∵∠MON=30°
∴∠1=180°-120°-30°=30°
又∵∠3=60°
∴∠5=180°-60°-30°=90°
∵∠MON=1=30°
OA1=A1B1=a
A2B1=a
∵△A2B2A3A3B3A4是等边三角形,
∴∠11=10=60°,∠13=60°
∵∠4=12=60°
A1B1A2B2A3B3B1A2B2A3
∴∠1=6=7=30°,∠5=8=90°
A2B2=2B1A2B3A3=2B2A3
A3B3=4B1A2=4a
A4B4=8B1A2=8a
A5B5=16B1A2=16a
以此类推:A6B6=32B1A2=32a
故答案为:32a

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:是某出租车单程收费y()与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:

1当行使8千米时,收费应为 元;

2从图象上你能获得哪些信息?(请写出2)

________

____________________________

3求出收费y()与行使x(千米)(x≥3)之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有依次排列的3个数:398,对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3698,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3363998,继续依次操作下去,问:从数串398开始操作第一百次以后所产生的那个新数串的所有数之和是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AFDE相交于点G,BFCE相交于点H.

(1)求证:四边形EHFG是平行四边形;

(2)①若四边形EHFG是菱形,则平行四边形ABCD必须满足条件   

②若四边形EHFG是矩形,则平行四边形ABCD必须满足条件   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1□OABC的边OCy轴的正半轴上,OC3A(21),反比例函数y (x0)的图象经过点B

1)求点B的坐标和反比例函数的关系式;

2)如图2,将线段OA延长交y (x0)的图象于点D,过BD的直线分别交x轴、y轴于EF两点,①求直线BD的解析式;②求线段ED的长度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的边BCx轴上,且∠ACB=90°.反比例函数y=x0)的图象经过AB边的中点D,且与AC边相交于点E,连接CD.已知BC=2OB,△BCD的面积为6

1)求k的值;(2)若AE=BC,求点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中,已知点A(02),△AOB为等边三角形,Px轴负半轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ

(1)求点B的坐标;

(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小:如改变,请说明理由;

(3)连接OQ,当OQAB时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,RtABC的直角边AC在x轴上,ACB=90°,AC=1,反比例函数(k0)的图象经过BC边的中点D(3,1)

(1)求这个反比例函数的表达式;

(2)若ABC与EFG成中心对称,且EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.

求OF的长;

连接AF,BE,证明四边形ABEF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=6.

(1)求⊙O的面积;

(2)若D为⊙O上一点,且ABD为等腰三角形,求CD的长.

查看答案和解析>>

同步练习册答案