精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点A(1,0)、B(11,0),点C为线段AB上一动点,以AC为直径的⊙D的半径DE⊥AC,△CBF是以CB为斜边的等腰直角三角形,且点E、F都在第四象限,当点F到过点A、C、E三点的抛物线的顶点的距离最小时,该抛物线的解析式为

【答案】y=(x﹣2
【解析】解:设点C(m,0),
∵以AC为直径的⊙D的半径DE⊥AC,
∴点
∵△CBF是以CB为斜边的等腰直角三角形,


当点F到过点A、C、E三点的抛物线的顶点的距离最小,
∴当m=6时,EF最小=6,
∴C(6,0),E( , ﹣),
设抛物线的解析式为y=a(x﹣2
∵抛物线经过A(1,0),
∴0=a(1﹣2
∴a=
∴y=(x﹣2
所以答案是y=(x﹣2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,对角线AC,BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:

(1)△ODE≌△FCE;
(2)四边形ODFC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的痕迹.

(1)      (2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.

(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.

(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明

如图,端点为P的两条射线分别交两直线l1、l2A、C、B、D四点,已知∠PBA=PDC,l=PCD,求证:∠2+3=180°.

证明:∵∠PBA=PDC(   

   (同位角相等,两直线平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代换)

∴PC//BF(内错角相等,两直线平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC的三个顶点A,B,C的坐标分别为A(4,0),B(0,-3),C(2,-4).

(1)在如图的平面直角坐标系中画出△ABC关于x轴对称的△A'B'C',并分别写出A′,B′,C′的坐标;

(2)将△ABC向左平移5个单位,请画出平移后的△A″B″C″,并写出△A″B″C″各个顶点的坐标;

(3)求出(2)中的△ABC在平移过程中所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点DEF∥BC,分别交AB、ACE、F两点,则图中共有__________个等腰三角形;EFBE、CF之间的数量关系是__________,△AEF的周长是__________;

(2)如图2,若将(1)中“△ABC中,AB=AC=10”该为△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有__________个等腰三角形;EFBE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长;

(3)已知:如图3,D△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点DDE∥BC,分别交AB、ACE、F两点,则EFBE、CF之间又有何数量关系呢?直接写出结论不证明

查看答案和解析>>

同步练习册答案