【题目】如图, ABCD 的对角线 AC 、 BD 相交于点O , BD 12cm , AC 6cm ,点 E 在线段 BO 上从点 B 以1cm / s 的速度向点 O 运动,点 F 在线段OD 上从点O 以 2cm / s 的速度向点 D 运动.
(1)若点 E 、F 同时运动,设运动时间为t 秒,当t 为何值时,四边形 AECF 是平行四边形.
(2)在(1)的条件下,当 AB 为何值时, AECF 是菱形;
(3)求(2)中菱形 AECF 的面积.
【答案】(1)t=2s;(2)AB=;(3)24.
【解析】
(1)若是平行四边形,则有6t=2t,即可求得t值;
(2)若是菱形,则AC垂直于BD,即有AO2+BO2=AB2,故AB可求;
(3)由(1)(2)可知当t=2s,AB=时,四边形AECF是菱形,求得EF=8,于是得到结论.
解:(1)∵四边形ABCD为平行四边形,
∴AO=OC,EO=OF,
∵BO=OD=6cm,
∴EO=6t,OF=2t,
∴6t=2t,
∴t=2s,
∴当t为2秒时,四边形AECF是平行四边形;
(2)若四边形AECF是菱形,则AC⊥BD,
∴AO2+BO2=AB2,
∴AB== ;
∴当AB为时,AECF是菱形;
(3)由(1)(2)可知当t=2s,AB=时,四边形AECF是菱形,
∴EO=6t=4,
∴EF=8,
∴菱形AECF的面积=,
科目:初中数学 来源: 题型:
【题目】(1)如图(1),O为四边形ABCD内一点,连接OA、OB、OC、OC可以得几个三角形?它与边数有何关系?
(2)如图(2),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?
(3)如图(3),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.
(1)判断⊙O与BC的位置关系,并说明理由;
(2)若CE=2,求⊙O的半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“奔跑吧,兄弟!”节目组预设计一个新游戏:“奔跑”路线A、B、C、D四地,如图A、B、C三地在同一直线上,D在A北偏东30°方向,在C北偏西45°方向,C在A北偏东75°方向,且BD=BC=40m,从A地到D地的距离是_____m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△A1B1C1是位似图形.
(1)在网格上建立平面直角坐标系,使得点A的坐标为(﹣6,﹣1),点C1的坐标为(﹣3,2),则点B的坐标为 ;
(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1:2;
(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为 ,计算四边形ABCP的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一次函数y=mx+2的图象经过点(﹣2,6).
(1)求m的值;
(2)画出此函数的图象;
(3)平移此函数的图象,使得它与两坐标轴所围成的图形的面积为4,请直接写出此时图象所对应的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,AE⊥BC于点E,F为AB边上一点,连接CF,交AE于点G,CF=CB=AE.
(1)若AB,BC,求CE的长;
(2)求证:BE=CG﹣AG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,OB是∠AOC的平分线,OD是∠COE的平分线.
(1)若∠AOB=50°,∠DOE=35°,求∠BOD的度数;
(2)若∠AOE=160°,∠COD=40°,求∠AOB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
污水处理设备 | A型 | B型 |
价格(万元/台) | m | m-3 |
月处理污水量(吨/台) | 220 | 180 |
(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com