精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠C=90°,BC=6,AC=8,PQ∥AB,点P在AC上(与点A、C不重合),点Q在BC上.试问:在AB上是否存在点M,使△PQM为等腰直角三角形?若存在,求PQ的长;若不存在,请说明理由.

解:AC=8,BC=6,由勾股定理得:AB=10,
设PC=x,
∵PQ∥AB,
=
∵PC=x,BC=10,AC=8,代入可求出
∵△PQM为等腰直角三角形,
∴讨论哪个角为直角如下:
(1)当∠MPQ为直角时,则可得

在△ABC中,而在△PMA中
∴得,从而.(若∠MQP为直角类似)

(2)当∠PMQ为直角时,则可得PM=MQ=
过P作PN⊥AB于N,
易得
同(1)得

分析:由于PQ的位置是变化的,故可以使△PQM为等腰直角三角形,设PC=x,当△PQM为等腰直角三角形时,有三种情况:
1、当∠MPQ为直角时,可得到PM=PQ=x,而在△ABC中,而在△PMA中,建立方程可求得x的值,从而求得PQ的值.
2、若∠MQP为直角,与1类似;
3、当∠PMQ为直角时,则可得PQ=MQ=,过P作PN⊥AB于N,易得,即可求得PQ的值.
点评:本题利用了等腰直角三角形的性质,正弦的概念求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案