精英家教网 > 初中数学 > 题目详情

【题目】在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(如图1).
(1)如图2,设折痕与边BC交于点O,连接,OP、OA.已知△OCP与△PDA的面积比为1:4,求边AB的长;
(2)动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN、CA,交于点F,过点M作ME⊥BP于点E.
①在图1中画出图形;
②在△OCP与△PDA的面积比为1:4不变的情况下,试问动点M、N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.

【答案】解:(1)如图2,∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴∠1+∠3=90°,
∵由折叠可得∠APO=∠B=90°,
∴∠1+∠2=90°,
∴∠2=∠3,
又∵∠D=∠C,
∴△OCP∽△PDA,
∵△OCP与△PDA的面积比为1:4,
=
∴CP=AD=4,
设OP=x,则CO=8﹣x,
在Rt△PCO中,∠C=90°,
由勾股定理得 x2=(8﹣x)2+42
解得:x=5,
∴AB=AP=2OP=10,
∴边AB的长为10;
(2)①作图如下:

②作MQ∥AN,交PB于点Q,如图1.
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP,∠ABP=∠MQP.
∴∠APB=∠MQP.
∴MP=MQ.
∵MP=MQ,ME⊥PQ,
∴PE=EQ=PQ.
∵BN=PM,MP=MQ,
∴BN=QM.
∵MQ∥AN,
∴∠QMF=∠BNF.
在△MFQ和△NFB中,

∴△MFQ≌△NFB.
∴QF=BF.
∴QF=QB.
∴EF=EQ+QF=PQ+QB=PB.
由(1)中的结论可得:
PC=4,BC=8,∠C=90°.
∴PB==4
∴EF=PB=2
∴当点M、N在移动过程中,线段EF的长度不变,长度为2

【解析】(1)根据相似三角形△OCP∽△PDA的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长;
(2)①根据题意作出图形;
②由边相等常常联想到全等,但BN与PM所在的三角形并不全等,且这两条线段的位置很不协调,可通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长.
【考点精析】解答此题的关键在于理解二次函数图象的平移的相关知识,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P是直线OB上的点,要使点P,M,N构成等腰三角形的点P有(  )个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BON=   ;(直接写出结果)

(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;

(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为4 , 求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一个等腰直角三角形按图示方式依次翻折,若DEa,则①DC平分∠BDE;②BC长为1a;③△BCD是等腰三角形;④△CED的周长等于BC的长.则上述命题中正确的序号是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AD∥BC,过点D作DF⊥BC于F.若AD=2,BC=4,DF=2,则DC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为(

A.100米 B.99米 C.98米 D.74米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的两直角边所在直线分别与直线BC,CD交于M,N.

(1如图1,若点O与点A重合,则OM与ON的数量关系是__________________;

(2如图2,若点O正方形的中心(即两对角线的交点,则(1中的结论是否仍然成立?请说明理由

(3如图3,若点O在正方形的内部(含边界,当OM=ON时,请探究点O在移动过程中可形成什么图形?

(4如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部移动所形成的图形”提出一个正确的结论.(不必说理

查看答案和解析>>

同步练习册答案