【题目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.
(1)求y与x的函数关系式;
(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.
【答案】(1)(0<x<20);(2)当x=10或x=16,存在点P使△PEF是Rt△.
【解析】
试题分析:(1)在Rt△ABC中,根据三角函数可求y与x的函数关系式;
(2)分三种情况:①如图1,当∠FPE=90°时,②如图2,当∠PFE=90°时,③当∠PEF=90°时,进行讨论可求x的值.
试题解析:(1)在Rt△ABC中,∠B=90°,AC=20,AB=10,∴sinC=,∵PE⊥BC于点E,∴sinC==,∵PC=x,PE=y,∴(0<x<20);
(2)存在点P使△PEF是Rt△,①如图1,当∠FPE=90°时,四边形PEBF是矩形,BF=PE=x,四边形APEF是平行四边形,PE=AF=x,∵BF+AF=AB=10,∴x=10;
②如图2,当∠PFE=90°时,Rt△APF∽Rt△ABC,∠ARP=∠C=30°,AF=40﹣2x,平行四边形AFEP中,AF=PE,即:40﹣2x=x,解得x=16;
③当∠PEF=90°时,此时不存在符合条件的Rt△PEF.
综上所述,当x=10或x=16,存在点P使△PEF是Rt△.
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.
(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是( )
A.AB=A′B′
B.BC∥B′C′
C.直线l⊥BB′
D.∠A′=120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.
(1)时,求抛物线的解析式和BC的长;
(2)如图时,若AP⊥PC,求的值;
(3)是否存在实数,使,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com