精英家教网 > 初中数学 > 题目详情

已知:如图,在平面直角坐标系xOy中,以点P(2,数学公式)为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在点C的左边).
(1)求经过A、B、C三点的抛物线的解析式;
(2)在(1)中的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的数学公式.如果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;
(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最短的路径的长.

解:(1)连接PA,PB,PC,过点P作PG⊥BC于点G,
∵⊙P与y轴相切于点A,
∴PA⊥y轴,
∵P(2,),
∴OG=AP=2,PG=OA=
∴PB=PC=2,
∴BG=1,
∴CG=1,BC=2.
∴OB=1,OC=3.
∴A(0,),B(1,0),C(3,0),
根据题意设二次函数解析式为:y=a(x-1)(x-3),

解得:a=
故二次函数的解析式为:

(2)∵点B(1,0),点P(2,),
∴BP的解析式为:y=x-
则过点A平行于BP的直线解析式为:y=x+,过点C平行于BP的直线解析式为:y=x-3l2
从而可得①:x+=x2-x+
解得:x1=0,x2=7,
从而可得满足题意的点M的坐标为(0,)、(7,8);
x-3=x2-x+
解得:x1=3,x2=4,
从而可得满足题意的点M的坐标为:(3,0)、(4,
综上可得点M的坐标为(0,),(3,0),(4,),(7,).

(3)∵=
∴抛物线的顶点Q(2,).
作点P关于y轴的对称点P',则P'(-2,).
连接P'Q,则P'Q是最短总路径,根据勾股定理,可得P'Q=

分析:(1)连接PA,PB,PC,过点P作PG⊥BC于点G,求出P点的坐标,然后求得点A、B、C的坐标用待定系数法求得二次函数的解析式即可;
(2)因为△ABP和△CBP的面积是菱形ABCP面积的,故过点A、C作BP的平行线,与抛物线的交点即是满足条件的点M.
(3)将原方程配方后得到抛物线的顶点Q(2,),然后作点P关于y轴的对称点P',则P’(-2,).连接P'Q,则P'Q是最短总路径,根据勾股定理,可得P′Q=
点评:此题考查了二次函数综合题,涉及了待定系数法求函数解析式、轴对称最短路径、菱形的性质,难点在第二问,关键是利用平行线的性质得出点M的寻找办法,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案