精英家教网 > 初中数学 > 题目详情
9.?ABCD中,∠A=4∠B,则∠D的度数是(  )
A.18°B.36°C.72°D.144°

分析 由平行四边形的性质得出∠A+∠B=180°,再由已知条件∠A=4∠B,即可得出∠B的度数,再根据平行四边形的对角相等即可求出∠D的度数.

解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,∠B=∠D,
∴∠A+∠B=180°,
∵∠A=4∠B,
∴4∠B+∠B=180°,
解得:∠B=36°;
∴∠D=36°,
故选B.

点评 本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.原型:如图①,在Rt△ABC中,∠ACB=90°,C是在直线l上的一点,AD⊥l,BE⊥l,垂足分别为D、E.易证△ACD∽△CBE.(不需证明)
应用:点A、B在抛物线y=x2上,且OA⊥OB,连结AB与y轴交于点C,点C的坐标为(0,d).过点A、B分别作x轴的垂线,垂足为M、N,点M、N的坐标分别为(m,0)、(n,0).
(1)当OA=OB时,如图②,m=1,d=1;
    当OA≠OB,如图③,m=$\frac{2}{3}$时,d=1.
(2)若将抛物线“y=x2”换成“y=2x2”,其他条件不变,当OA=OB时,d=$\frac{1}{2}$;当OA≠OB,m=1时,d=$\frac{1}{2}$.
探究:若将抛物线“y=x2”换成“y=ax2(a>0)”,其他条件不变,解答下列问题:
(1)完成下列表格.
 a 1$\frac{1}{2}$ 
 d $\frac{1}{2}$$\frac{1}{3}$ 
(2)猜测d与a的关系,并证明其结论.
拓展:如图④,点A、B在抛物线y=ax2(a>0)上,且OA⊥OB,连结AB与y轴关于点C,AB的延长线与x轴交于点D.AE⊥x轴,垂足为E,当AE=$\frac{4}{3a}$时,△AOE与△CDO的面积之比为4:9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,抛物线y=-$\frac{1}{2}$x2+x+4与x轴和y轴的正半轴分别交于点A和B.
(1)求点A,点B的坐标及AB的长;
(2)已知M为AB的中点,∠PMQ在AB的同侧以点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D,设AD的长为m(m>0),BC的长为n.
①求n随m变化的函数解析式;
②若点E(-k-1,-k2+1)在抛物线y=-$\frac{1}{2}$x2+x+4上,且点E不在坐标轴上,当m,n为何值时,∠PMQ的边过点E?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,MN与BC在同一条直线上,且MN=BC=2,点B和点N重合,以MN为底作高为2的等腰△PMN,以BC为边作正方形ABCD,若设△PMN沿射线BC方向平移的距离为x,两图形重合部分的面积为y,则y关于x的函数大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在正方形ABCD中,BD是一条对角线,点P在直线CD上(不与点C、D重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.
(1)问题发现:如图1,若点P在线段CD上,AH与PH的数量关系是AH=PH,位置关系是AH⊥PH;
(2)拓展探究:如图2,若点P在线段CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明,否则说明理由;
(3)解决问题:若点P在线段DC的延长线上,且∠AHQ=120°,正方形ABCD的边长为2,请直接写出求DP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:抛物线y=x2+bx+c经过点A(2,-3)和B(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图象G1,求图象G1的表达式;
(3)设B点关于对称轴的对称点为E,抛物线G2:y=ax2(a≠0)与线段EB恰有一个公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,?ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为(  )
A.6cmB.8cmC.10cmD.12cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b应满足(  )
A.a=bB.a=0C.ab=1D.a+b=0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=$\frac{6}{x}$(x>0)和y=-$\frac{8}{x}$(x<0)的图象交于点P、Q,连结PO、QO,则△PAQ的面积为7.

查看答案和解析>>

同步练习册答案