【题目】萧山某艺术团组织一场义演,售出成人和学生票共1000张,筹得票款7760元.
(1)若成人票9元/张,学生票5元/张,求售出成人票和学生票各多少张
(2)若(1)中的票价不变,售出8张,所得票款数能否为6750元?为什么?
【答案】(1)售出成人票为690张,学生票为310张;(2)所得票款数不能为6750元.
【解析】
(1)设成人票售出x张,学生票售出(1000﹣x)张,根据“成人票和学生票的总钱数为7760元”列出方程,解方程即可求得结论;(2)设成人票售出y张,学生票售出(8-y)张,列出y的一元一次方程,求出y的值,若y是整数,即可能,若是分数,即不可能.
解:(1)设成人票售出x张,学生票售出(1000﹣x)张,
依题意得,9x+5(1000﹣x)=7760,
解得,x=690,
1000﹣690=310,
答:售出成人票为690张,学生票为310张.
(2)设成人票售出y张,学生票售出(8﹣y)张,
依题意得,9y+5(8﹣y)=6750,
解得,y=1677,
因为y是整数,所以不可能.
答:所得票款数不能为6750元.
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④4a﹣2b+c>0,其中正确的个数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣ x+b与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲、乙两人均从400米的环形跑道的A处出发,各自以每秒6米和每秒8米的速度在跑道上跑步.
(1)若两人同时出发,背向而行,则经过 秒钟两人第一次相遇;若两人同时出发,同向而行,则经过 秒钟乙第一次追上甲.
(2)若两人同向而行,乙在甲出发10秒钟后去追甲,经过多少时间乙第二次追上甲.
(3)若让甲先跑10秒钟后乙开始跑,在乙用时不超过100秒的情况下,乙跑多少秒钟时,两人相距40米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.
(1)求甲每分钟走多少米?
(2)两人出发多少分钟后恰好相距480米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com