精英家教网 > 初中数学 > 题目详情

【题目】如图四边形ABCDABDCB90°FDC上一点FCABEAD上一点ECAF于点G.

(1)求证:四边形ABCF是矩形;

(2)EDEC求证:EAEG.

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)先证明四边形ABCF是平行四边形.再由∠B=90°,即可得出四边形ABCF是矩形.

(2)由等腰三角形的性质得出∠D=∠ECD,证出∠EAG=∠EGA,即可得出结论.

试题解析:(1)证明:∵AB∥DC,FC=AB,

∴四边形ABCF是平行四边形.

∵∠B=90°,

∴四边形ABCF是矩形.

(2)证明:由(1)可得,∠AFC=90°,

∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.

∵ED=EC,

∴∠D=∠ECD.

∴∠DAF=∠CGF.

∵∠EGA=∠CGF,

∴∠EAG=∠EGA.

∴EA=EG.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.

(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,射线分别和直线交于点,射线分别和直线交于点,点在射线上运动(点与三点不重合),设,,

(1)如果点两点之间运动时,之间有何数量关系?请说明理由;

(2)如果点两点之外运动时,之间有何数量关系?(只需写出结论,不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线ABCD

(1)如图1,点E在直线BD的左侧,猜想∠ABE、CDE、BED的数量关系,并证明你的结论;

(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;

(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF

(1)根据题意,补全原形;
(2)求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同
(1)求甲、乙两种救灾物品每件的价格各是多少元?
(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 ,并求其整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为丰富学生的校园生活,准备从友谊体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同、每个篮球的价格相同),若购买3个篮球和2个足球共需420元;购买2个篮球和4个足球共需440元.
(1)购买一个篮球、一个足球各需多少元?
(2)根据该中学的实际情况,需要从该体育用品商店一次性购买足球和篮球共20个.要求购买篮球数不少于足球数的2倍,总费用不超过1840元,那么这所中学有哪几种购买方案?哪种方案所需费用最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB为定点,定直线l//ABPl上一动点.点MN分别为PAPB的中点,对于下列各值:

线段MN的长;

②△PAB的周长;

③△PMN的面积;

直线MNAB之间的距离;

⑤∠APB的大小.

其中会随点P的移动而变化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

同步练习册答案