【题目】已知,直线AB∥CD
(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;
(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;
(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.
【答案】(1)∠ABE+∠CDE=∠BED;(2)∠BED=2∠BFD;(3)2∠BFD+∠BED=360°.
【解析】分析:(1)首先过点E作EF∥AB,易证得∠1=∠ABE, ∠2=∠CDE,则可得.
(2)首先连接FE并延长,易得,又由BF、DF分别平分∠ABE、∠CDE,以及(1)的结论,易证得∠BED=2∠BED;
(3)由,以及BF、DF分别平分∠ABE、∠CDE与,即可证得结论.
本题解析:
(1)∠ABE+∠CDE=∠BED.
证明:过点E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠1=∠ABE,∠2=∠CDE,
∴∠BED=∠1+∠2=∠ABE+∠CDE;
(2)∠BED=2∠BFD.
证明:连接FE并延长,
∵∠BEG=∠BFE+∠EBF,∠DEG=∠DFE+∠EDF,
∴∠BED=∠BFD+∠EBF+∠EDF,
∵BF、DF分别平分∠ABE、∠CDE,
∴∠ABE+∠CDE=2(∠EBF+∠EDF),
∵∠BED=∠ABE+∠CDE,
∴∠EBF+∠EDF=∠BED,
∴∠BED=∠BFD+∠BED,
∴∠BED=2∠BFD;
(3)2∠BFD+∠BED=360°.
∵BF、DF分别平分∠ABE、∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠ABF+∠CDF=(∠ABE+∠CDE),
∵∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE),
∴∠ABE+∠CDE=2∠BFD,
∵∠BED+∠BFD+∠EBF+∠EDF=360°,
∴2∠BFD+∠BED=360°.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过A(-1,0)、B(3,0)两点,点C是抛物线与y轴的交点.
(1)求抛物线的解析式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)在抛物线的对称轴上是否存在点M,使△BCM是等腰三角形,若存在请直接写出点M坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC为等边三角形(三条边相等三个角为60°的三角形),点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠BFD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AC=BC=10 cm,AB=12 cm,点D是AB的中点,连结CD,动点P从点A出发,沿A→C→B的路径运动,到达点B时运动停止,速度为每秒2 cm,设运动时间为秒.
(1)求CD的长;
(2)当为何值时,△ADP是直角三角形?
(3)直接写出:当为何值时,△ADP是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师每天从甲地到乙地锻炼身体,甲、乙两地相距14千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式( )
A.80x+200(10-x)≤1.4B.80x+200(10-x)≤1400
C.200x+80(10-x)≥1.4D.200x+80(10-x)≥1400
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB⊥BC,CD⊥BC,垂足分别为B、C,AB=BC,E为BC的中点,且AE⊥BD于F,若CD=4cm,则AB的长度为( )
A. 4cm B. 8cm C. 9cm D. 10cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填注理由:
如图,已知:直线AB,CD被直线EF,GH所截,且∠1=∠2,
试说明:∠3+∠4=180°.
解:∵∠1=∠2 (______________)
又∵∠2=∠5 (________)
∴∠1=∠5 (________)
∴AB∥CD (________)
∴∠3+∠4=180(________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)在x轴下方的抛物线上是否存在一点P,使△PAB的面积等于△ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com