【题目】如图是本地区一种产品30天的销售图像,图1是产品销售量y(件)与时间t(天)的函数关系,图2是一件产品的销售利润z(元)与时间t(天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是( )。
A. 第24天的销售量为200件B. 第10天销售一件产品的利润是15元
C. 第12天与第30天这两天的日销售利润相等D. 第30天的日销售利润是750元
【答案】C
【解析】
图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对A做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,做出对B的判断,分别求出第12天和第30天的销售利润,对C、D进行判断.
解:A、根据图①可得第24天的销售量为200件,故正确;
B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,
得,z=-t+25(0≤t≤20),
当20<t≤30时候,由图2知z固定为5,则:
,,当t=10时,z=15,因此B也是正确的;
C、第12天的销售利润为:[100+(200-100)÷24×12](25-12)=2150元,第30天的销售利润为:150×5=750元,不相等,故C错误;
D、第30天的销售利润为:150×5=750元,正确;
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°.
(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)
(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4.则-2019应排在A,B,C,D,E中______的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的方法拼成一个边长为(m+n)的正方形.
⑴ 请用两种不同的方法求图2中阴影部分的面积.
方法1: ;方法2: ;
⑵ 观察图2写出,,三个代数式之间的等量关系: ;
⑶ 根据⑵中你发现的等量关系,解决如下问题:若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了2元".
花去 | 剩余 | |
买牛肉 | 40元 | 60元 |
买猪脚 | 30元 | 30元 |
买蔬菜 | 18元 | 12元 |
买调料 | 12元 | 0元 |
总计 | 100元 | 102元 |
表1
花去 | 剩余 | |
买牛肉 | 40元 | 60元 |
买猪脚 | 30元 | 30元 |
买蔬菜 | 元 | 元 |
买调料 | 元 | 0元 |
总计 | 100元 | 103元 |
表2
花去 | 剩余 | |
买物品1 | a元 | x元 |
买物品2 | b元 | y元 |
买物品3 | c元 | z元 |
买物品4 | d元 | 0元 |
总计 | 100元 | w元 |
表3
花去 | 剩余 | |
买牛肉 | 元 | 元 |
买猪脚 | 元 | 元 |
买蔬菜 | 元 | 元 |
买调料 | 元 | 元 |
总计 | 元 | / |
表4
(1)为了解释“剩余金额总计”与“我手里有100元"无关,请按要求填写表2中的空格.
(2)如表3中,直接写出各代数式的值: .
①a+b+c+d=_ ;
②a+x=__ ;
③a+b+y=_ ;
④a+b+c+z=_ 。
(3)如表3中,a、b、c、d都是正整数,则w的最大值等于_ ,最小值等于_ ,由此可以知道“为什么多出了2元”只是一个诡辩而已.
(4)我们将“花去”记为“一”,“剩余”记为“+”,请在表4中将表1数据重新填写.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角三角形EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合)上述结论正确的是_____________.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com