精英家教网 > 初中数学 > 题目详情

【题目】如图,直线ABCD相交于点OOEABOFCD.

(1)OC恰好是∠AOE的平分线,则OA是∠COF的平分线吗?请说明理由;

(2)若∠EOF5BOD,求∠COE的度数.

【答案】(1)OA是∠COF的平分线;(2)∠COE60°

【解析】

1)利用角平分线的性质和垂直的定义易得∠AOC=AOE=45°,再由OFCD,可得∠COF=90°,易得∠AOF,由垂直的定义可得结论;

2)设∠AOC=x,易得∠BOD=x,可得∠COE=90°-x,∠EOF=180°-x,利用∠EOF=5BOD,解得x,可得∠COE

1OA是∠COF的平分线.

OEAB

∴∠AOE=90°

OC恰好是∠AOE的平分线,

∴∠AOC=AOE=45°

OFCD

∴∠COF=90°

∴∠AOF=COF-AOC=90°-45°=45°

OA是∠COF的平分线;

2)设∠AOC=x

∴∠BOD=x

∵∠AOE=90°

∴∠COE=AOE-AOC=90°-x

∴∠EOF=COE+COF=90°-x+90°=180°-x

∵∠EOF=5BOD

180°-x=5x

解得x=30

∴∠COE=90°-30°=60°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,FCD上一点,∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度数为整数,则∠C的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形 ABCD中,O为 AC 的中点,过点O的直线分别与AB,CD交于点E,F,连接 BF交AC于点M连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四边形 EBFD 是菱形;⑤MB:OE=3:2其中正确结论的个数是( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:

)九(1)班班长说:我们班捐款总数为1200元,我们班人数比你们班多8人.

)九(2)班班长说:我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%

请根据两个班长的对话,求这两个班级每班的人均捐款数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.

(1)如图1,∠EOF在直线CD的右侧:

①若∠COE=30°,求∠BOF和∠POE的度数;

②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.

(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:

①请直接写出∠POE与∠BOP之间的数量关系;

②请直接写出∠POE与∠DOP之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1所示,在△ABC中,EFBC,点DEF上,BDCD分别平分∠ABC、∠ACB,若已知BE=3,CF=5,求EF的长度;

(2)如图2所示,BD平分∠ABCCD平分∠ACGDEBCAB于点E,交AC于点F,线段EFBECF有什么数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】电脑中有一种游戏——蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:①操作一次减x分;②每完成一列加y分.有一次小明在玩这种蜘蛛纸牌游戏时,随手用表格记录了两个时段的电脑显示:

第一时段

第二时段

完成列数

2

5

分数

634

898

操作次数

66

102

(1)通过列方程组,求xy的值

(2)如果小明最终完成此游戏(即完成10),分数是1 182,问他一共操作了多少次?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBC,∠B=90°,EAB上一点,分别以EDEC为折痕将两个角(∠A,∠B)向内折起,点AB恰好落在CD边上的点F处,若AD=2,BC=6,则EF的值是(  )

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程 ,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程 的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当 与a,b,c之间满足怎样的关系时,点P( ),Q( )就是符合要求的一对固定点?

查看答案和解析>>

同步练习册答案