精英家教网 > 初中数学 > 题目详情

【题目】如图CD为⊙O的直径ABCD于点E连接BDOB

(1)求证:△AEC∽△DEB

(2)CDABAB=8,DE=2,求⊙O的半径

【答案】(1)答案见解析;(2)5.

【解析】

1)由同弧的圆周角相等即可得出∠ACE=∠DBE,结合∠AEC=∠DEB,即可证出△AEC∽△DEB;(2)设 O的半径为r,则CE=2r-2,根据垂径定理以及三角形相似的性质即可得出关于r的一元一次方程,解方程即可得出r值,此题得解.

本题解析:(1)证明:∵∠AEC=∠DEB,∠ACE=∠DBE,

∴△AEC∽△DEB.

(2)O的半径为r,则CE=2r2.

∵CD⊥AB,AB=8,

∴AE=BE=AB=4.

∵△AEC∽△DEB,

,

解得:r=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.

(1)作出ABC关于y轴对称的A1B1C1

(2)ABC向下平移3个单位长度,得到A2B2C2,直接写出A2B2C2的坐标;

(3)四边形BB2C2C的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠C=90°DE垂直平分斜边AB,分别交ABBCDE.若∠CAB=∠B+30°CE=2cm

:1∠AEB 度数.

2BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小李制作了一张ABC纸片,点D、E分别在边AB、AC上,现将ABC沿着DE折叠压平,使点A落在点A′位置.若A=75°,则1+2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等边三角形ABC中,DAB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE

1)求证:△DBC≌△EAC

2)如图1,令BC8ACDE交于点O,当AECE时,求AO的长.

3)如图2,当图中的点D运动到边BA的延长线上,所作△EDC仍为等边三角形,且有ACCE时,试猜想线段AE与线段CD的位置关系?并说明理由.(自己在图中画出图形后解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OAx轴上,将菱形OABC绕原点O顺时针旋转75°至OA’B’C’的位置.若OB=,∠C=120°,则点B’的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点在线段上运动(不与重合),连接交线段.

1)当时,____________,点运动时,逐渐变______(填“大”或“小”);

2)当等于多少时,全等?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A、B分别在x轴、y轴上,AB=12,∠OAB=30°,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.


(1)直接写出A、B点坐标是A点 ,B点
(2)用含t的代数式求出表示点P的坐标;
(3)过O作OC⊥l于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并写出此时⊙P与直线CD的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+cyx的部分对应值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值yx的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案