试题分析:(1)由勾股定理求得BD的长,根据三角形面积公式求出AE的长,再应用勾股定理即可求得BE的长.
(2)根据平移的性质求解即可.
(3)分DP=DQ(考虑点Q在线段BD的延长线和点Q在线段BD上两种情况),QP=QD,PD=PQ三种情况求解即可.
试题解析:(1)∵AB=5,AD=
,∴由勾股定理得
.
∵
,∴
,解得AE=4.
∴
.
(2)当点F在线段AB上时,
;当点F在线段AD上时,
.
(3)存在,理由如下:
①当DP=DQ时,若点Q在线段BD的延长线上时,如答图1,有∠Q=∠1,则∠2=∠1+∠Q=2∠Q.
∵∠3=∠4+∠Q,∠3=∠2,∴∠4+∠Q=2∠Q.∴∠4=∠Q.
∴A′Q=A′B=5.∴F′Q=4+5=9.
在Rt△BF′Q中,
,解得
或
(舍去).
若点Q在线段BD上时,如答图2,有∠1=∠2=∠4,
∵∠1=∠3,∴∠3=∠4.
∵∠3=∠5+∠A′,∠A′=∠CBD,∴∠3=∠5+∠CBD=∠A′BQ.∴∠4=∠∠A′BQ.∴A′Q= A′B=5.
∴F′Q=5-4=1.∴
.∴
.
②当QP=QD时,如答图3,有∠P=∠1,
∵∠A′=∠1,∠2=∠3,∴∠4=∠P.∴∠4=∠A′.∴QB="Q" A′.
设QB="Q" A′=x,
在Rt△BF′Q中,
设备,解得
.
③当PD=PQ时,如答图4,有∠1=∠2=∠3,
∵∠1=∠A′,∴∠3=∠A′.∴BQ=A′B=5.
∴
.
综上所述,当△DPQ为等腰三角形时,DQ的长为
.