精英家教网 > 初中数学 > 题目详情

【题目】如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.

(1)图中“象”的位置可表示为____________

(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.

【答案】(53)

【解析】整体分析:

(1)根据所在的位置确定原点,再确定“象”的位置;(2)根据象棋的走子规则,确定“马”和“象”下一步可以到达的位置.

解:(1)(53)

(2)“马”下一步可到达的位置有(11)(31)(42)(15)(35)(44)

“象”下一步可到达的位置有(31)(71)(35)(75)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:

(1)本次参加抽样调查的居民人数是   人;

(2)将图 ①②补充完整;( 直接补填在图中)

(3)求图中表示“A”的圆心角的度数;

(4)若居民区有8000人,请估计爱吃D汤圆的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=(
A.1:4
B.1:3
C.1:2
D.1:1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点DBC的中点,点EAD.

(1)求证:BE=CE.

(2)如图,BE的延长线交AC于点F,BFAC,垂足为F,BAC=45,原题设其它条件不变,求证:△AEF≌△BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知:ABCD,点EF分别在ABCD上,且OEOF

(1)求证:∠1+∠2=90°;

(2)如图2,分别在OECD上取点GH,使FO平分∠CFGEO平分∠AEH,求证:FGEH

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)证明:∠BAE=∠FEC;
(2)证明:△AGE≌△ECF;
(3)求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按图2的形状拼成一个正方形.

图2的阴影部分的正方形的边长是______.

用两种不同的方法求图中阴影部分的面积.

(方法1)= ____________

(方法2)= ____________

(3) 观察图2,写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系;

根据题中的等量关系,解决问题:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】世界杯期间,某娱乐场所举办消夏看球赛活动,需要对会场进行布置,计划在现场安装小彩灯和大彩灯.已知安装5个小彩灯和4个大彩灯共需150元;安装7个小彩灯和6个大彩灯共需220元.

1)安装1个小彩灯和1个大彩灯各需多少元?

(2)若场地共需安装小彩灯和大彩灯300个,费用不超过4350元,则最多安装大彩灯多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个形如六边形的点阵,它的中心是一个点,算做第一层,第二层每边两个点,第三层每边三个点,以此类推.

(1)填写下表

层数

1

2

3

4

5

该层对应的点数

1

6

12

(2)写出第n层对应的点数(n≥2);

(3)如果某层一共有72个点,请你求出对应的层数.

查看答案和解析>>

同步练习册答案