精英家教网 > 初中数学 > 题目详情

某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.

(1)求每个篮球和每个排球的销售利润;

(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.


解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,

根据题意得:

解得:

答:每个篮球和每个排球的销售利润分别为25元,20元;

(2)设购进篮球m个,排球(100﹣m)个,

根据题意得:

解得:≤m≤35,

∴m=34或m=35,

∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


           .

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线y=﹣2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:


的平方根是 

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:(﹣2)0+(1+4cos30°﹣||

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线a,b被直线c所截,且a∥b,∠1=40°,则∠2=  度.

查看答案和解析>>

科目:初中数学 来源: 题型:


下列运算正确的是(  )

    A.a+2a=2a2          B. +=          C.                             (x﹣3)2=x2﹣9    D. (x23=x6

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

(1)求抛物线的解析式;

(2)问:当t为何值时,△APQ为直角三角形;

(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;

(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.

(1)求篮球、足球的单价分别为多少元?

(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?

查看答案和解析>>

同步练习册答案