分析 (1)过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=$\frac{1}{2}$|k|;
(2)由CE•OE=4,得到OE=$\frac{4}{CE}$,根据勾股定理列方程得到CE=2,得到OE=2,根据三角形的中位线即可得到结论.
解答 解:(1)如图,过C点作CE⊥x轴,垂足为E.![]()
∵Rt△OAB中,∠OBA=90°,
∴CE∥AB,
∵C为Rt△OAB斜边OA的中点C,
∴CE为Rt△OAB的中位线,
∵△OEC∽△OBA,
∴$\frac{OC}{OA}$=$\frac{1}{2}$.
∵双曲线的解析式是y=$\frac{k}{x}$,即xy=k
∴S△BOD=S△COE=$\frac{1}{2}$|k|,
∴S△AOB=4S△COE=2|k|,
由S△AOB-S△BOD=S△AOD=2S△DOC=6,得2k-$\frac{1}{2}$k=6,
∴k=4.
∴双曲线的解析式为y=$\frac{4}{x}$;
(2)∵CE•OE=4,
∴OE=$\frac{4}{CE}$,
∵CE2+OE2=OC2,
即CE2+($\frac{4}{CE}$)2=(2$\sqrt{2}$)2,
∴CE=2,
∴OE=2,
∵CE为Rt△OAB的中位线,
∴AB=2CE=4,OB=2OE=4,
∴A(4,4).
点评 本题考查了反比函数k的几何意义,过图象上的任意一点作x轴、y轴的垂线,所得三角形的面积是$\frac{1}{2}$|k|,是经常考查的知识点,也体现了数形结合的思想.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com