【题目】如今通过微信朋友圈发布自己每天行走的步数已成为一种时尚.“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们1月29日那天每人行走的步数情况分为五个类别:A(0~4000步)(说明:0~4000表示大于或等于0,小于或等于4000,下同)、B(4001~8000步)、C(8001~12000步)、D(12001~16000步)、E(16000步以上),并将统计结果绘制了如图1和2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)小张随机抽取了 名微信朋友圈好友;
(2)将图1的条形统计图补充完整;
(3)已知小张的微信朋友圈里共300人,请根据本次抽查的结果,估计在它的微信朋友圈里1月29日那天行走不超过8000步的人数.
科目:初中数学 来源: 题型:
【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,是角平分线,.
(1)如图1,是高,,,则 (直接写出结论,不需写解题过程);
(2)如图2,点在上,于,试探究与、之间的数量关系,写出你的探究结论并证明;
(3)如图3,点在的延长线上,于,则与、之间的数量关系是 (直接写出结论,不需证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与直线交于点,.
求抛物线的解析式.
点是抛物线上、之间的一个动点,过点分别作轴、轴的平行线与直线交于点、,以、为边构造矩形,设点的坐标为,求,之间的关系式.
将射线绕原点逆时针旋转后与抛物线交于点,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AC=15cm,BC=12cm,点D是线段AC的中点,动点P从A﹣D﹣B﹣C向终点C出发,速度为5cm/s,当点P不与点A、B重合时,作PE⊥AB交线段AB于点E,设点P的运动时间为t(s),△APE的面积为S(cm2).
(1)写出线段AB的长;
(2)当点P在线段BD上时,求PE的长(用含t的式子表示);
(3)当点P沿A﹣D﹣B运动时,用含t的代数式表示S;
(4)点E关于直线AP的对称点为E′,当点E′落在△ABC的内部时,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°.再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF.已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).
(1)用含t的代数式表示出NC与NF;
(2)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值,如果不能,说明理由;
(3)求y与t的函数关系式及相应t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.
(1)当y1﹣y2=4时,求m的值;
(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,当时,则点C的坐标为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com