精英家教网 > 初中数学 > 题目详情

在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分别在AD、CD上,DE=CF,AF、BE交于点P.请你量一量∠BPF的度数,并证明你的结论.

解:∠BPF=120°,
证明:∵在等腰梯形ABCD中,AD=CD=AB,∠BAE=∠D,DE=CF,
∴AE=DF
∴△ABE≌△DAF(SAS)
∴∠ABE=∠DAF,∠AEB=∠DFA,
∵∠ABC=∠C=60°,
∴∠BAD=∠CDA=120°,
∵∠ABE+∠AEB+∠BAD=180°,
∴∠ABE+∠AEB=60°,
∵∠DAF+∠AEB+∠APE=180°,
∠BPF=∠APE,
∴∠BPF=180°-(∠DAF+∠AEB)
=180°-(∠ABE+∠AEB)
=180°-60°
=120°.
分析:此题利用梯形面积及SAS判定△ABE≌△DAF,再利用角与角之间的关系得出∠BPF=120°.
点评:本题考查了等腰梯形的性质和全等三角形的判定方法等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,则下底BC的长为
7
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,点P为BC边上任意一点,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分别是E、F、G,请你探索PE、PF、BG的长度之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.
(1)求证:四边形AECD是平行四边形;
(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,MB=MC吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足为O,过D作DE∥AC交BC的延长线于E.
(1)求证:四边形ACED是平行四边形;
(2)若AD=4,BC=8,求梯形ABCD的面积.

查看答案和解析>>

同步练习册答案