如图,直线y=x+1与y轴交于A点,与反比列函数y=
(x>0)的图象交于点M,过M作MH⊥x,且tan∠AHO=
.
(1)求k的值;
(2)设点N(1,a)是反比例函数y=
(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.
![]()
(1)6;(2)(0,5).
【解析】
试题分析:(1)对于直线y=x+1,令x=0求出y的值,确定出A坐标,得到OA的长,根据tan∠AHO的值,利用锐角三角函数定义求出OH的长,根据MH垂直于x轴,得到M横坐标与A横坐标相同,再由M在直线y=x+1上,确定出M坐标,代入反比例解析式求出k的值即可;
(2)将N坐标代入反比例解析式求出a的值,确定出N坐标,过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),此时PM+PN最小,由N与N1关于y轴的对称,根据N坐标求出N1坐标,设直线MN1的解析式为y=kx+b,把M,N1的坐标代入求出k与b的值,确定出直线MN1的解析式,令x=0求出y的值,即可确定出P坐标.
(1)由y=x+1可得A(0,1),即OA=1,
∵tan∠AHO=
,
∴OH=2,
∵MH⊥x轴,
∴点M的横坐标为2,
∵点M在直线y=x+1上,
∴点M的纵坐标为3,即M(2,3),
∵点M在
上,
∴k=2×3=6;
(2)∵点N(1,a)在反比例函数
的图象上,
∴a=6,即点N的坐标为(1,6),
过N作N关于y轴的对称点N1,连接MN1,交y轴于P(如图),
![]()
此时PM+PN最小,
∵N与N1关于y轴的对称,N点坐标为(1,6),
∴N1的坐标为(-1,6),
设直线MN1的解析式为y=kx+b,
把M,N1的坐标得
,
解得:
,
∴直线MN1的解析式为y=-x+5,
令x=0,得y=5,
∴P点坐标为(0,5).
考点:反比例函数综合题.
科目:初中数学 来源:2013-2014学年江苏省江阴市九年级一模数学试卷(解析版) 题型:解答题
如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.
(1)求a,b,c的值;
(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.
①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省江阴市九年级一模数学试卷(解析版) 题型:选择题
如图,点A在反比例函数y=
(x>0)的图像上,点B在反比例函数y=-
(x<0)的图像上,且 ∠AOB=90°,则tan∠OAB ( ).
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省昆山市九年级下学期教学质量调研(二模)数学试卷(解析版) 题型:填空题
若某个圆锥的侧面积为8 πcm2,其侧面展开图的圆心角为45°,则该圆锥的底面半径为 cm.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年江苏省无锡市九年级二模数学试卷(解析版) 题型:解答题
如图,直角梯形OABC中,AB∥OC,点A坐标为(0,6),点C坐标为(3,0),BC=
,一抛物线过点A、B、 C.
(1)填空:点B的坐标为 ;
(2)求该抛物线的解析式;
(3)作平行于x轴的直线与x轴上方的抛物线交于点E 、F,以EF为直径的圆恰好与x轴相切,求该圆的半径.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com