精英家教网 > 初中数学 > 题目详情

【题目】如图,的直径,是弦,是弧的中点,过点垂直于直线垂足为,交的延长线于点

求证:的切线;

,求的半径.

【答案】(1)详见解析;(2)⊙O的半径为

【解析】

1)证明EF的切线,可以连接OD,证明ODEF

2)要求的半径,即线段OD的长,在证明EOD∽△EAF的基础上,利用对应线段成比例可得,其中AF=6AE可利用勾股定理计算出来,OE可用含半径的代数式表示出,这样不难计算出半径OD的长.

1)证明:连接OD

EFAF

∴∠F90°.

D的中点,∴

∴∠EOD=∠DOCBOC

∵∠ABOC,∴∠A=∠EOD

ODAF

∴∠EDO=∠F90°.∴ODEF

EF⊙O的切线;

2)解:在RtAFE中,∵AF6EF8

10

⊙O半径为r,∴EO10r

∵∠A=∠EOD,∠E=∠E

∴△EOD∽△EAF,∴

r,即⊙O的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.

1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子,并用线段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本

1当销售单价为70元时,每天的销售利润是多少?

2求出每天的销售利润y与销售单价x之间的函数关系式,并求出自变量的取值范围

3如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?每天的总成本=每件的成本×每天的销售量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDO的直径,点BO上,连接BCBD,直线ABCD的延长线相交于点AAB2ADACOEBD交直线AB于点EOEBC相交于点F

1)求证:直线AEO的切线;

2)若O的半径为3cosA,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为进一步促进“美丽校园”创建工作,某校团委计划对八年级五个班的文化建设进行检查,每天随机抽查一个班级,第一天从五个班级随机抽取一个进行检查,第二天从剩余的四个班级再随机抽取一个进行检查,第三天从剩余的三个班级再随机抽取一个进行检查…,以此类推,直到检查完五个班级为止,且每个班级被选中的机会均等

(1)第一天,八(1)班没有被选中的概率是   

(2)利用网状图或列表的方法,求前两天八(1)班被选中的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1S2S3.若S1S2S310,则S2的值为(  )

A.B.C.3D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校门口竖着“前方学校,减速慢行”的交通指示牌CD,数学“综合与实践”小组的同学将“测量交通指示牌CD的高度”作为一项课题活动,他们定好了如下测量方案:

项目

内容

课题

测量交通指示牌CD的高度

测量示意图

测量步骤

(1)从交通指示牌下的点M处出发向前走10 米到达A处;

(2)在点A处用量角仪测得∠DAM27°;

(3)从点A沿直线MA向前走10米到达B处;(4)在点B处用量角仪测得∠CBA18°.

请你帮助该小组同学根据上表中的测量数据,求出交通指示牌CD的高度.(参考数据sin27°≈0.45cos27°≈0.89tan27°≈0.51sin18°≈0.31cos18°≈0.95tan18°≈0.32)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,GBC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法,其中正确说法的个数是(  )

(1)ACBD的交点是圆O的圆心;

(2)AFDE的交点是圆O的圆心;

(3)

(4)DE>DG,

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.

根据以上信息,解答下列问题:

1 类学生有 人,补全条形统计图;

2类学生人数占被调查总人数的 %

(3)从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率

查看答案和解析>>

同步练习册答案