【题目】如图,等腰△ABC中,AB=AC,点D是AC上一动点,点E在BD的延长线上,且AB=AE,AF平分∠CAE交DE于F.
(1)如图1,连CF,求证:∠ABE=∠ACF;
(2)如图2,当∠ABC=60°时,求证:AF+EF=FB;
(3)如图3,当∠ABC=45°时,若BD平分∠ABC,求证:BD=2EF.
【答案】(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)先根据SAS证得△ACF≌△AEF,推出∠E=∠ACF,再根据等腰三角形性质推出∠E=∠ABF,即可得出结论;
(2)在FB上截取BM=CF,连接AM,证△ABM≌△ACF,推出EF=FC=BM,AF=AM,再证得△AMF是等边三角形,于是可得MF=AF,即可证得结论;
(3)连接CF,延长BA、CF交N,根据ASA证△BFC≌△BFN,推出CN=2CF=2EF,再根据ASA证明△BAD≌△CAN,推出BD=CN,即可得出答案.
证明:(1)∵AF平分∠CAE,∴∠EAF=∠CAF,
∵AB=AC,AB=AE,∴AE=AC,
在△ACF和△AEF中,,
∴△ACF≌△AEF(SAS),
∴∠E=∠ACF,
∵AB=AE,∴∠E=∠ABE,
∴∠ABE=∠ACF.
(2)∵△ACF≌△AEF,∴EF=CF,∠E=∠ACF=∠ABM,
在FB上截取BM=CF,连接AM,如图2,
在△ABM和△ACF中,,
∴△ABM≌△ACF(SAS),
∴AM=AF,∠BAM=∠CAF,
∵AB=AC,∠ABC=60°,
∴△ABC是等边三角形,
∴∠BAC=60°,
∴∠MAF=∠MAC+∠CAF=∠MAC+∠BAM=∠BAC=60°,
∵AM=AF,∴△AMF为等边三角形,
∴AF=AM=MF,
∴AF+EF=BM+MF=FB,
即AF+EF=FB.
(3)连接CF,延长BA、CF交于点N,如图3,
∵∠ABC=45°,BD平分∠ABC,AB=AC,
∴∠ABF=∠CBF=22.5°,∠ACB=45°,∠BAC=180°﹣45°﹣45°=90°,
由(1)的结论得:∠ACF=∠ABF=22.5°,
∴∠BFC=180°﹣22.5°﹣45°﹣22.5°=90°,
∴∠BFN=∠BFC=90°,
在△BFN和△BFC中,,
∴△BFN≌△BFC(ASA),∴CF=FN,
由(2)题得:CF=EF,
则CN=2CF=2EF,
∵∠BAC=90°,∴∠NAC=∠BAD=90°,
在△BAD和△CAN中,,
∴△BAD≌△CAN(ASA),
∴BD=CN=2CF=2EF.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,每个小正方形的边长均为个单位,的三个顶点都在格点上点.
(1)在网格中画出向下平移个单位得到的;
(2)在网格中画出关于直线对称的;
(2)在直线上画一点,使得的值最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE是菱形,则要增加的条件是________.(只写出符合要求的一个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是( )
A. AD平分∠BAC
B. AB=AC且BD=CD
C. AD为中线
D. EF⊥AD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点坐标是(-1,2),且过点(0, ).
(1)求二次函数的解析式,并在图中画出它的图象;
(2)求证:对任意实数m,点M(m,-m2)都不在这个二次函数的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.
(1)若∠A=∠AOC=30°,则BC_______BO(填“>”“=”“<”);
(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度数(用含α的代数式表示);
(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB绕O点旋转(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com