精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB3BC4,将对角线AC绕对角线交点O旋转,分别交边ADBC于点EF,点P是边DC上的一个动点,且保持DPAE,连接PEPF,设AEx0x3).

1)填空:PC   ,FC   ;(用含x的代数式表示)

2)求△PEF面积的最小值;

3)在运动过程中,PEPF是否成立?若成立,求出x的值;若不成立,请说明理由.

【答案】(1)PC=3﹣x,FC=x;(2)当x=时,△PEF面积的最小值为;(3)PE⊥PF不成立理由见解析.

【解析】

1)由矩形的性质可得ADBCDCAB3AOCO,可证AEO≌△CFO,可得AECFx,由DPAEx,可得PC3x

2)由SEFPS梯形EDCFSDEPSCFP,可得SEFPx2x+6=(x2+,根据二次函数的性质可求PEF面积的最小值;

3)若PEPF,则可证DPE≌△CFP,可得DECP,即3x4x,方程无解,则不存在x的值使PEPF

1)∵四边形ABCD是矩形

ADBCDCAB3AOCO

∴∠DAC=∠ACB,且AOCO,∠AOE=∠COF

∴△AEO≌△CFOASA

AECF

AEx,且DPAE

DPxCFxDE4x

CP3xPCCDDP3x

故答案为:3xx

2)∵SEFPS梯形EDCFSDEPSCFP

SEFP

x2x+6=(x2+

∴当x时,PEF面积的最小值为.

3)不成立

理由如下:若PEPF,则∠EPD+FPC90°

又∵∠EPD+DEP90°

∴∠DEP=∠FPC,且CFDPAE,∠EDP=∠PCF90°

∴△DPE≌△CFPAAS

DECP

3x4x

则方程无解,

∴不存在x的值使PEPF

PEPF不成立.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠BAC30°,将△ABC绕点A逆时针旋转α(30α150)得到△AB′C′BC两点的对应点分别为点B′C′,连接BC′BCACAB′相交于点EF

(1)α70时,∠ABC′_____°,∠ACB′______°

(2)求证:BC′CB′

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.

(1)试求A,B,C的坐标;

(2)将ABC绕AB中点M旋转180°,得到BAD.3

求点D的坐标;

判断四边形ADBC的形状,并说明理由;

(3)在该抛物线对称轴上是否存在点P,使BMP与BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠C=72°,△ABC绕点B逆时针旋转,当点C的对应点C1落在边AC上时,设AC的对应边A1C1与AB的交点为E,则∠BEC1___°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;

(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操场上有三根测杆ABMNXYMNXY,其中测杆AB在太阳光下某一时刻的影子为BC(如图中粗线).

(1)画出测杆MN在同一时刻的影子NP(用粗线表示),并简述画法;

(2)若在同一时刻测杆XY的影子的顶端恰好落在点B处,画出测杆XY所在的位置(用实线表示),并简述画法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线MN与以AB为直径的半圆相切于点C,∠A28°.

(1)求∠ACM的度数;

(2)MN上是否存在一点D,使ABCDACBC,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.

(1)请只用直尺和圆规,将此零件的左视图画在规定的位置(不必写作法,只须保留作图痕迹)

(2)若此零件底面圆的半径r2cm,高h3cm,求此零件的表面积.

查看答案和解析>>

同步练习册答案