【题目】如图,已知等边的边长为8,是中线上一点,以为一边在下方作等边,连接并延长至点为上一点,且,则的长为_________.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线的解析式为,点的坐标分别为(1,0),(0,2),直线与直线相交于点.
(1)求直线的解析式;
(2)点在第一象限的直线上,连接,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,当时,则点C的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蔬菜基地种植了娃娃菜和油菜两种蔬菜共亩,设种植娃娃菜亩,总收益为万元,有关数据见下表:
成本(单位:万元/亩) | 销售额(单位:万元/亩) | |
娃娃菜 | 2.4 | 3 |
油菜 | 2 | 2.5 |
(1)求关于的函数关系式(收益 = 销售额 – 成本);
(2)若计划投入的总成本不超过万元,要使获得的总收益最大,基地应种植娃娃菜和油菜各多少亩?
(3)已知娃娃菜每亩地需要化肥kg,油菜每亩地需要化肥kg,根据(2)中的种植亩数,基地计划运送所需全部化肥,为了提高效率,实际每次运送化肥的总量是原计划的倍,结果运送完全部化肥的次数比原计划少次,求基地原计划每次运送多少化肥.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:矩形,点在的延长线上,连接,,且,的平分线交于点.
(1)如图1,求的大小;
(2)如图2,过点作交的延长线于点,求证:;
(3)如图3,在(2)的条件下,交于点,点为的中点,连接交于点,点在上,且,连接,且.延长交于点,连接,若的周长与的周长的差为2,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.
(1)求每小时的进水量;
(2)当8≤x≤12时,求y与x之间的函数关系式;
(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com