【题目】如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,当时,则点C的坐标为______.
【答案】
【解析】试题解析:连接OC,分别过点A.C作x、y轴的平行线交于E点,CE交x轴于D点,如图:
由反比例的性质可知,A.B两点关于中心O对称,即OA=OB,
又∵△ACB为等腰直角三角形,
∴CO⊥AB,且OC=OA.
设直线AB的解析式为y=ax(a>0),则OC的解析式为
设点A(m,am),点C(an,n),
∵OA=OC,即
解得n=±m,
∵A在第一象限,C在第三象限,
∴n=m>0,
即C(am,m).
∵轴, 轴,
∴△CDF∽△CAE,
又 AC=AD+CD,
∵点A(m,am),点C(am,m),
∴点E(am,am),点F(am,0),
即
∵反比例函数y=kx的图象经过点
解得,
∴反比例函数的解析式为
又∵点A(m,am)在反比例函数的图象上,且,
解得或 (舍去).
将 代入点C(am,m)中,可得:点C的坐标为
故答案为:
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,⊙O过BC的中点D,且DE垂直AC于E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若AB=13,BC=10,求DE的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校把一块三角形的废地开辟为动物园,如图所示,测得AC=80m,BC=60m,AB=100m.
(1)若入口E在边AB上,且与A、B等距离,求入口E到出口C的最短距离;
(2)若线段CD是一条小渠,且点D在边AB上.点D距点A多远时,水渠的距离最短?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求a的值,并写出抛物线的表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,
①当点M(2,n)时,求n,并求△ABM的面积.
②当点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值和此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)把下面的证明补充完整:
如图,已知直线EF分别交直线AB、CD于点M、N,AB∥CD,MG平分∠EMB,NH平分∠END.求证:MG∥NH
证明:∵AB∥CD(已知)
∴∠EMB=∠END( )
∵MG平分∠EMB,NH平分∠END(已知),
∴∠EMG=∠EMB,∠ENH=∠END( ),
∴ (等量代换)
∴MG∥NH( ).
(2)你在第(1)小题的证明过程中,应用了哪两个互逆的真命题?请直接写出这一对互逆的真命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如,此题设“,”,得方程,解得,.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需周才能完成,设甲公司单独完成需周,乙公司单独完成需周,则得到方程_______.利用整体思想 ,解得__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=β度,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线交于点A2,得∠A2,…∠A2017BC与∠A2017CD的平分线交于点A2018,得∠A2018.则∠A2018=_____度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com