【题目】如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=
,则MN的长为。![]()
【答案】![]()
【解析】解:如图,连接GM,GN,![]()
∵AG=AB,AE=AE,
∴△AGE≌△ABE,
同理可证△AGF≌△ADF,
∴BE=EG=4,DF=FG=6,
设正方形的边长为a,在Rt△CEF中,CE=a-4,CF=a-6,
由勾股定理,得CE2+CF2=EF2 , 即(a-4)2+(a-6)2=102 ,
解得a=12或-2(舍去负值),
∴BD=12
, 易证△ABM≌△AGM,△ADN≌△AGN,
∴MG=BM=3
,NG=ND=1
-3
-MN=9
-MN, ∠MGN=∠MGA+∠NGA=∠MBA+∠NDA=90°,
在Rt△GMN中,由勾股定理,得MG2+NG2=MN2 , 即(3
)2+(9
-MN)2=MN2 ,
解得MN=5
所以答案是:5
.
【考点精析】通过灵活运用勾股定理的概念,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
科目:初中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,2011年春季以来,我省遭受了严重的旱情,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图1、图2是根据调查结果做出的统计图的一部分.
请根据信息解答下列问题:
(1)图1中淘米水浇花所占的百分比为 ;
(2)图1中安装节水设备所在的扇形的圆心角度数为 ;
(3)补全图2;
(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请填空,完成下面的证明,并注明理由.
如图,
,
,BE平分
,DF平分
.
![]()
求证:
.
证明:∵
,(已知)
∴
.(_________)
∵
,(已知)
∴__________
.(两直线平行,同旁内角互补)
∴
.(_________)
∵
,(已知)
∴
.(_________)
同理,
.
∴________=
.
∵
,(已知)
∴
.(两直线平行,内错角相等)
∴
.
∴
.(__________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函数
的图象相交于C、D两点,分别过C、D两点作y轴,x轴的垂线,垂足为E、F,连接CF、DE,有下列结论:①△CEF与△DEF的面积相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面积等于
,其中正确的个数有( )![]()
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形
的边
的边分别在
轴,
轴正半轴上,
, 点
从点
出发以每秒2个单位长度的速度向终点
运动,点
不与点
重合以
为边在
上方作正方形
,设正方形
与
的重叠部分图形的面积为
(平方单位),点
的运动时间为
(秒).
![]()
(1)直线
所在直线的解析式是__________________________.
(2)当点
落在线段
上时,求
的值.
(3)在点
运动的过程中,求
与
之间的函数关系式;
(4)设边
的中点为
,点
关于点
的对称点为
,以
为边在
上方作正方形
当正方形
与
重叠部分图形为三角形时,直接写出
的取值范围.
(提示:根据点
的运动,可在草纸上画出正方形
与
重叠部分图形为不同图形时的临界状态去研究.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com