精英家教网 > 初中数学 > 题目详情

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为(  )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A.
B.
C.
D.

【答案】A
【解析】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,
则∠EHG=∠HEF=90°,
∵∠AEF=143°,
∴∠AEH=∠AEF﹣∠HEF=53°,
∠EAH=37°,
在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,
∴EH=AEsin∠EAH≈1.2×0.60=0.72(米),
∵AB=1.2米,
∴AB+EH≈1.2+0.72=1.92≈1.9米.
故选:A.

过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AEsin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线l1l2,直线ll1l2分别交于AB两点,点MN分别在l1l2上,点MNP均在l的同侧(点P不在l1l2上),若∠PAM=α,∠PBN=β

1)当点Pl1l2之间时.

①求∠APB的大小(用含αβ的代数式表示);

②若∠PAM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,∠Pn1AM的平分线与∠Pn1BN的平分线交于点Pn,则∠AP1B=  ,∠APnB=  .(用含αβ的代数式表示,其中n为正整数)

2)当点P不在l1l2之间时.

若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,∠Pn1AM的平分线与∠Pn1BN的平分线交于点Pn,请直接写出∠APnB的大小.(用含αβ的代数式表示,其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E、F分别在AD、BC上,且AE=CF. 求证:四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM= ,则MN的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,过对角线BD上点P作直线EFGH分别平行于ABBC,那么图中共有( )对面积相等平行四边形.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了对一颗倾斜的古杉树AB进行保护,需测量其长度:在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,(参考数据: ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).则这颗古杉树AB的长约为(
A.7.27
B.16.70
C.17.70
D.18.18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车同时从地出发前往地.甲车中途因故停车一段时间,之后以原速继续行驶,与乙车同时到达地.下图是甲、乙两车离开地的路程与时间之间的函数图象.

1)甲车每小时行驶_________千米,的值为________

2)求甲车再次行驶过程中之间的函数关系式.

3)甲、乙两车离开地的路程差为8千米时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽想用一块面积为的正方形纸片,沿着边的方向裁出一块面积为的长方形纸片,使它的长宽之比为4:3,他不知道能否裁的出来,正在发愁,请你用所学知识帮小丽分析,能否裁出符合要求的纸片.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为矩形的对角线,将边沿折叠,使点落在上的点处,将边沿折叠,使点落在上的点处.

1)求证:四边形是平行四边形;

2)若求四边形的面积及之间的距离.

查看答案和解析>>

同步练习册答案