【题目】如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.
(1)当点P在l1与l2之间时.
①求∠APB的大小(用含α、β的代数式表示);
②若∠PAM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠Pn﹣1AM的平分线与∠Pn﹣1BN的平分线交于点Pn,则∠AP1B= ,∠APnB= .(用含α、β的代数式表示,其中n为正整数)
(2)当点P不在l1与l2之间时.
若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠Pn﹣1AM的平分线与∠Pn﹣1BN的平分线交于点Pn,请直接写出∠APnB的大小.(用含α、β的代数式表示,其中n为正整数)
【答案】(1)①∠APB=α+β; ②∠AP1B=(α+β);∠APnB=;(2)∠ApnB=
【解析】
(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α,由∠APQ=∠MAP=α①,∠QPB=∠PBN=β②,①+②即可解决问题.
(2)利用(1)的结论即可解决问题,分两种情形写出结论即可.
(1)①过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α … ①
∵l1∥l2,
∴PQ∥l2,
∴∠QPB=∠PBN=β … ②,
①+②得∠APQ+∠BPQ=∠MAP+∠PBN,
∴∠APB=α+β.
由上可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)
∴∠APnB=.
故∠AP1B=(α+β);∠APnB=
(2)当P在l1上方时,β>α,∠APnB=.
当点P在l2下方时,α>β,∠ApnB=.
故 ∠ApnB=
科目:初中数学 来源: 题型:
【题目】已知 、 是关于 的方程 的两个不相等的实数根.
(1)求实数 的取值范围;
(2)已知等腰 的一边长为7,若 、 恰好是 另外两边长,求这个三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中描出下列各点,并将各组内的这些点依次用线段连接起来.
①,,;②,,,.
观察所描出的图形,解答下列问题:
(1)坐标轴上的点有_________,轴上的点_______坐标等于零,轴上的点_____坐标等于零.
(2)线段与轴_______,点和点_______坐标相同,线段上其他点_____坐标相同.
(3)线段与轴_______,点和点_______坐标相同,线段上其他点_____坐标相同.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,2011年春季以来,我省遭受了严重的旱情,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图1、图2是根据调查结果做出的统计图的一部分.
请根据信息解答下列问题:
(1)图1中淘米水浇花所占的百分比为 ;
(2)图1中安装节水设备所在的扇形的圆心角度数为 ;
(3)补全图2;
(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数 的图象与 轴交于A、B两点(A在B的左侧),与 轴交于点C,顶点为D.
(1)求点A、B的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
(2)设一次函数 的图象经过B、D两点,请直接写出满足 的 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线上有、两点,,点是线段上的一点,OA=2OB.
(1)________,________;
(2)若点C是线段AB上一点,且满足,求CO的长;
(3)若动点、分别从点、同时出发,在直线上向右运动.点P的速度为,点的速度为,设动点、运动的时间为,当点与点重合时,、两点都停止运动,求当为何值时,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高农民收入,某区一水果公园引进一种新型蟠桃,蟠桃进价为每公斤40元.上市后通过一段时间的试营销发现:当蟠桃销售单价在每公斤40元至90元之间(含40元和90元)时,每月的销售量(公斤)与销售单价(元/公斤)之间的关系可近似地看作一次函数,其图像如图所示.
(1)求与的函数解析式,并写出定义域;
(2)如果想要每月获得2400元的利润,那么销售单价应定为每公斤多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com