精英家教网 > 初中数学 > 题目详情

【题目】为提高农民收入,某区一水果公园引进一种新型蟠桃,蟠桃进价为每公斤40元.上市后通过一段时间的试营销发现:当蟠桃销售单价在每公斤40元至90元之间(含40元和90元)时,每月的销售量(公斤)与销售单价(元/公斤)之间的关系可近似地看作一次函数,其图像如图所示.

1)求的函数解析式,并写出定义域;

2)如果想要每月获得2400元的利润,那么销售单价应定为每公斤多少元?

【答案】1;(2)销售单价应定为60元或70

【解析】

1)利用图象上的点的坐标,由待定系数法求一次函数解析式即可得出答案;

2)由每一件的利润×销售量=2400列出方程求出x的值即可.

解:(1)设的函数解析式为:

由题意得 解得

2)由题意得,

解得

答:销售单价应定为60元或70元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,Am0),Bn0),C(﹣12),且满足式|m+2|+m+n220

1)求出mn的值.

2)①在x轴的正半轴上存在一点M,使COM的面积等于ABC的面积的一半,求出点M的坐标;

②在坐标轴的其它位置是否存在点M,使COM的面积等于ABC的面积的一半仍然成立,若存在,请直接在所给的横线上写出符合条件的点M的坐标;

3)如图2,过点CCDy轴交y轴于点D,点P为线段CD延长线上一动点,连接OPOE平分∠AOPOFOE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数 分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.

(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1l2,直线ll1l2分别交于AB两点,点MN分别在l1l2上,点MNP均在l的同侧(点P不在l1l2上),若∠PAM=α,∠PBN=β

1)当点Pl1l2之间时.

①求∠APB的大小(用含αβ的代数式表示);

②若∠PAM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,∠Pn1AM的平分线与∠Pn1BN的平分线交于点Pn,则∠AP1B=  ,∠APnB=  .(用含αβ的代数式表示,其中n为正整数)

2)当点P不在l1l2之间时.

若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,∠Pn1AM的平分线与∠Pn1BN的平分线交于点Pn,请直接写出∠APnB的大小.(用含αβ的代数式表示,其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EBC边上一点,且ABAE

1)求证:ACED

2)若AE平分∠DAB,∠EAC25°,求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD交于点OBDAD于点D,将ABD沿BD翻折得到EBD,连接ECEB

1)求证:四边形DBCE是矩形;

2)若BD=4AD=3,求点OAB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.
求证:DE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E、F分别在AD、BC上,且AE=CF. 求证:四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车同时从地出发前往地.甲车中途因故停车一段时间,之后以原速继续行驶,与乙车同时到达地.下图是甲、乙两车离开地的路程与时间之间的函数图象.

1)甲车每小时行驶_________千米,的值为________

2)求甲车再次行驶过程中之间的函数关系式.

3)甲、乙两车离开地的路程差为8千米时,直接写出的值.

查看答案和解析>>

同步练习册答案