精英家教网 > 初中数学 > 题目详情

【题目】如图,直线上有两点,,点是线段上的一点,OA=2OB.

1________________

2)若点C是线段AB上一点,且满足,求CO的长;

3)若动点分别从点同时出发,在直线上向右运动.P的速度为,点的速度为,设动点运动的时间为,当点与点重合时,两点都停止运动,求当为何值时,.

【答案】(1) 84;(2) 的长为;(3) 时,.

【解析】

1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;
2)根据图形可知,点C是线段AO上的一点,可设C点所表示的实数为x,分两种情况:①点C在线段OA上时,则x0,②点C在线段OB上时,则x0,根据AC=CO+CB,列出方程求解即可;

3)分0≤t44≤t6t≥6三种情况讨论求解即可;

解:(1AB=12cm, OA=2OB

OA+OB=3OB=AB=12cm

OA=8,OB=4.

2)设的长为.

答:的长为.

3)当0≤t4时,依题意有:
28-2t-4+t=4
解得t=
4≤t6时,依题意有:
22t-8-4+t=4
解得t=8(不合题意舍去);
t≥6时,依题意有:
22t-8-4+t=4
解得t=8
故当ts8s时,2OP-OQ=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且经A(1,0)、B(0,﹣3)两点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上,是否存在点M,使它到点A的距离与到点B的距离之和最小,如果存在求出点M的坐标,如果不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.

(1)证明:DE为⊙O的切线;
(2)连接OE,若BC=4,求△OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(注:方差公式 .)
(1)完成表中填空①;②
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩的方差为 ,你认为推荐谁参加比赛更合适,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1l2,直线ll1l2分别交于AB两点,点MN分别在l1l2上,点MNP均在l的同侧(点P不在l1l2上),若∠PAM=α,∠PBN=β

1)当点Pl1l2之间时.

①求∠APB的大小(用含αβ的代数式表示);

②若∠PAM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,∠Pn1AM的平分线与∠Pn1BN的平分线交于点Pn,则∠AP1B=  ,∠APnB=  .(用含αβ的代数式表示,其中n为正整数)

2)当点P不在l1l2之间时.

若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,∠Pn1AM的平分线与∠Pn1BN的平分线交于点Pn,请直接写出∠APnB的大小.(用含αβ的代数式表示,其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为 ,所以 ,从而 (当a=b时取等号).
阅读2:函数 (常数m>0,x>0),由阅读1结论可知: ,所以当 时,函数 的最小值为
阅读理解上述内容,解答下列问题:
(1)问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为 ,周长为 ,求当x=时,周长的最小值为
(2)问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=时, 的最小值为
(3)问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD交于点OBDAD于点D,将ABD沿BD翻折得到EBD,连接ECEB

1)求证:四边形DBCE是矩形;

2)若BD=4AD=3,求点OAB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EPCD交于点G,点HMN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,KGH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了对一颗倾斜的古杉树AB进行保护,需测量其长度:在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,(参考数据: ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).则这颗古杉树AB的长约为(
A.7.27
B.16.70
C.17.70
D.18.18

查看答案和解析>>

同步练习册答案