分析 先根据勾股定理求出OB和OC的长,再求出OB2+BC2=OC2,根据勾股定理的逆定理判断即可.
解答 解:∵∠A=∠OCD=90°,OA=2,OD=$\sqrt{7}$,AB=BC=CD=1,
∴在Rt△BAO中,由勾股定理得:OB=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
在Rt△DCO中,由勾股定理得:OC=$\sqrt{(\sqrt{7})^{2}-{1}^{2}}$=$\sqrt{6}$,
∴OB2+BC2=OC2=6,
∴∠OBC=90°,
故答案为:直角三角形.
点评 本题考查了勾股定理和勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键,注意:如果三角形两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$π | B. | $\frac{5}{3}$π | C. | $\frac{5}{2}$π | D. | $\frac{25}{3}$π |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com