ÔĶÁÏÂÁвÄÁÏ£º
ÎÒÃÇÖªµÀ|x|µÄ¼¸ºÎÒâÒåÊÇÔÚÊýÖáÉÏÊýx¶ÔÓ¦µÄµãÓëÔµãµÄ¾àÀ룻¼´|x|=|x-0|£¬Ò²¾ÍÊÇ˵£¬|x|±íʾÔÚÊýÖáÉÏÊýxÓëÊý0¶ÔÓ¦µãÖ®¼äµÄ¾àÀ룻
Õâ¸ö½áÂÛ¿ÉÒÔÍƹãΪ|x
1-x
2|±íʾÔÚÊýÖáÉÏÊýx
1£¬x
2¶ÔÓ¦µãÖ®¼äµÄ¾àÀ룻
ÔÚ½âÌâÖУ¬ÎÒÃǻ᳣³£ÔËÓþø¶ÔÖµµÄ¼¸ºÎÒâÒ壺
Àý1£º½â·½³Ì|x|=2£®ÈÝÒ׵óö£¬ÔÚÊýÖáÉÏÓëÔµã¾àÀëΪ2µÄµã¶ÔÓ¦µÄÊýΪ±2£¬¼´¸Ã·½³ÌµÄx=±2£»
Àý2£º½â²»µÈʽ|x-1|£¾2£®Èçͼ£¬ÔÚÊýÖáÉÏÕÒ³ö|x-1|=2µÄ½â£¬¼´µ½1µÄ¾àÀëΪ2µÄµã¶ÔÓ¦µÄÊýΪ-1£¬3£¬Ôò|x-1|£¾2µÄ½âΪx£¼-1»òx£¾3£»
Àý3£º½â·½³Ì|x-1|+|x+2|=5£®Óɾø¶ÔÖµµÄ¼¸ºÎÒâÒåÖª£¬¸Ã·½³Ì±íʾÇóÔÚÊýÖáÉÏÓë1ºÍ-2µÄ¾àÀëÖ®ºÍΪ5µÄµã¶ÔÓ¦µÄxµÄÖµ£®ÔÚÊýÖáÉÏ£¬1ºÍ-2µÄ¾àÀëΪ3£¬Âú×ã·½³ÌµÄx¶ÔÓ¦µãÔÚ1µÄÓұ߻ò-2µÄ×ó±ß£®Èôx¶ÔÓ¦µãÔÚ1µÄÓұߣ¬Èçͼ¿ÉÒÔ¿´³öx=2£»Í¬Àí£¬Èôx¶ÔÓ¦µãÔÚ-2µÄ×ó±ß£¬¿ÉµÃx=-3£®¹ÊÔ·½³ÌµÄ½âÊÇx=2»òx=-3£®
²Î¿¼ÔĶÁ²ÄÁÏ£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©·½³Ì|x+3|=4µÄ½âΪ______£»
£¨2£©½â²»µÈʽ|x-3|+|x+4|¡Ý9£»
£¨3£©Èô|x-3|-|x+4|¡Üa¶ÔÈÎÒâµÄx¶¼³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£®