已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:
![]()
(1)求
的面积;
(2)当t为何值是,△PBQ是直角三角形?
(3)设四边形APQC的面积为y(
),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是
面积的三分之二?如果存在,求出t的值;不存在请说明理由.
(1)
;(2)t=2或t=1;(3)不存在
【解析】
试题分析:(1)根据等边三角形的性质及三角形的面积公式求解即可;
(2)由题意此时P点和Q点移动距离为tcm,所以AP=BQ=tcm,BP=AB-AP=3-tcm,则在△PBQ中,∠B=60°,BP=3-t,BQ=t,分①当PQ⊥BC时,则∠BPQ=30°,②当PQ⊥BA时,则∠BQP=30°,两种情况,结合含30°角的直角三角形的性质求解即可;
(3)作QD⊥AB于D,则
,根据
的面积可表示出△BQD的面积,从而可得y与t的函数关系式,即可得到关于t的方程,由方程的根的判别式△
即可作出判断.
(1)
;
(2)此时P点和Q点移动距离为tcm,所以AP=BQ=tcm,BP="AB-AP=3-tcm"
在△PBQ中,∠B=60°,BP=3-t,BQ=t
①当PQ⊥BC时,则∠BPQ=30°
∴BP=2BQ,即3-t=2t
∴t=1;
②当PQ⊥BA时,则∠BQP=30°
∴BQ=2BP,即2(3-t)=t
∴t=2
综上所述,t=2或t=1;
(3)作QD⊥AB于D,则
![]()
∵![]()
![]()
∴
当![]()
∴
化简得:![]()
![]()
![]()
∴不存在这样的t.
考点:动点的综合题
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com