15£®ÈÏÕæÔĶÁ²ÄÁÏ£¬È»ºó»Ø´ðÎÊÌ⣺
ÎÒÃÇѧϰÁ˶àÏîʽµÄÔËËã·¨Ôò£¬ÏàÓ¦µÄ£¬ÎÒÃÇ¿ÉÒÔ¼ÆËã³ö¶àÏîʽµÄÕ¹¿ªÊ½£¬È磺£¨a+b£©1=a+b£¬£¨a+b£©2=a2+2ab+b2£¬£¨a+b£©3=£¨a+b£©2£¨a+b£©=a3+3a2b+3ab2+b3£¬¡­
ÏÂÃæÎÒÃÇÒÀ´Î¶Ô£¨a+b£©nÕ¹¿ªÊ½µÄ¸÷ÏîϵÊý½øÒ»²½Ñо¿·¢ÏÖ£¬µ±nÈ¡ÕýÕûÊýÊÇ¿ÉÒÔµ¥¶ÀÁгɱíÖеÄÐÎʽ£º

ÉÏÃæµÄ¶àÏîʽչ¿ªÏµÊý±í³ÆÎª¡°Ñî»ÔÈý½ÇÐΡ±£»×Ðϸ¹Û²ì¡°Ñî»ÔÈý½ÇÐΡ±£¬ÓÃÄã·¢ÏֵĹæÂÉÍê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©¶àÏîʽ£¨a+b£©7µÄÕ¹¿ªÊ½¹²ÓаËÏÆäÖеÚÈýÏîµÄϵÊýΪ21£»
£¨2£©ÊÔÇó³ö¶àÏîʽ£¨a+b£©9Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍ£®
£¨3£©½áºÏÉÏÊö²ÄÁÏ£¬¹Û²ì¹æÂÉ̽Ë÷³ö£º¶àÏîʽ£¨a+b£©n£¨nÈ¡ÕýÕûÊý£©µÄÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍS=2n£¨½á¹ûÓú¬×ÖĸnµÄ´úÊýʽ±íʾ£©£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔ½â´ð±¾Ì⣻
£¨2£©¸ù¾ÝÊýѧ¹éÄÉ·¨£¬Ð´³öǰ¼¸Ïî×Ü½á¹æÂÉ£¬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣻
£¨3£©¸ù¾ÝÊýѧ¹éÄÉ·¨£¬Ð´³öǰ¼¸Ïî×Ü½á¹æÂÉ£¬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬
£¨a+b£©7µÄÕ¹¿ªÊ½¹²ÓаËÏÆäÖеÚÈýÏîµÄϵÊýΪ£º6+15=21£¬
¹Ê´ð°¸Îª£º°Ë£¬21£»
£¨2£©¡ßµ±n=1ʱ£¬¶àÏîʽ£¨a+b£©1Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+1=2=21£¬
µ±n=2ʱ£¬¶àÏîʽ£¨a+b£©2Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+2+1=4=22£¬
µ±n=3ʱ£¬¶àÏîʽ£¨a+b£©3Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+3+3+1=8=23£¬
µ±n=4ʱ£¬¶àÏîʽ£¨a+b£©4Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+4+6+4+1=16=24£¬
¡­
¡à¶àÏîʽ£¨a+b£©9Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍ=29£®
£¨3£©¡ßµ±n=1ʱ£¬¶àÏîʽ£¨a+b£©1Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+1=2=21£¬
µ±n=2ʱ£¬¶àÏîʽ£¨a+b£©2Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+2+1=4=22£¬
µ±n=3ʱ£¬¶àÏîʽ£¨a+b£©3Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+3+3+1=8=23£¬
µ±n=4ʱ£¬¶àÏîʽ£¨a+b£©4Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ£º1+4+6+4+1=16=24£¬
¡­
¡à¶àÏîʽ£¨a+b£©nÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍ£ºS=2n£¬
¹Ê´ð°¸Îª£º2n£®

µãÆÀ ±¾Ì⿼²éÕûʽµÄ»¯¼òÇóÖµ£¬Êý×ֵı仯£¬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÀûÓÃÊýѧ¹éÄÉ·¨½â´ð±¾Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¾ØÐÎABCD£¬CD=6£¬EÊÇCDÖе㣬FÊÇBC±ßÉÏÒ»µã£¬°ÑRt¡÷ABFÑØAF·­ÕÛµãBÇ¡ºÃÂäÔÚE´¦£¬ÇóAFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¹Û²ìÏÂÁеÈʽ$\frac{1}{1¡Á2}$=1-$\frac{1}{2}$£¬$\frac{1}{2¡Á3}$=$\frac{1}{2}$-$\frac{1}{3}$£¬$\frac{1}{3¡Á4}$=$\frac{1}{3}$-$\frac{1}{4}$£¬°ÑÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º$\frac{1}{1¡Á2}$+$\frac{1}{2¡Á3}$+$\frac{1}{3¡Á4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$£®
£¨1£©²ÂÏ벢д³ö£º$\frac{1}{n£¨n+1£©}$=$\frac{1}{n}-\frac{1}{n+1}$£®
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
¢Ù$\frac{1}{1¡Á2}$+$\frac{1}{2¡Á3}$+$\frac{1}{3¡Á4}$+¡­+$\frac{1}{2008¡Á2009}$=$\frac{2008}{2009}$£»
¢Ú$\frac{1}{1¡Á2}$+$\frac{1}{2¡Á3}$+$\frac{1}{3¡Á4}$+¡­+$\frac{1}{n£¨n+1£©}$=$\frac{n}{n+1}$£®
£¨3£©Ì½¾¿²¢¼ÆË㣺$\frac{1}{2¡Á4}+\frac{1}{4¡Á6}+\frac{1}{6¡Á8}$+¡­+$\frac{1}{2006¡Á2008}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏA=2¡ÏB£¬ÇÒ¡ÏA¡¢¡ÏB¡¢¡ÏCµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£®
£¨1£©Èô¡ÏB=36¡ã£¬b=1£¬Ôòc=$\frac{\sqrt{5}+1}{2}$£»
£¨2£©Èçͼ1£¬Èôa=6£¬b=4£¬ÔòcµÄÖµ£»
£¨3£©Èçͼ2£¬Èô¡ÏA=2¡ÏB=4¡ÏC£®Èôc=3£¬Çó$\frac{a+b}{ab}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬¾ØÐÎABCDµÄÁ½Ìõ¶Ô½ÇÏß½»ÓÚµãO£¬DE¡ÎAC£¬CE¡ÎDB£¬DEºÍCE½»ÓÚµãE£¬ÇóÖ¤£ºOEºÍCD»¥Ïഹֱƽ·Ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬DÊÇ¡÷ABCÄÚÒ»µã£¬E¡¢F¡¢G¡¢H·Ö±ðÊÇAB¡¢AC¡¢CD¡¢BDµÄÖе㣬ÇóÖ¤£ºËıßÐÎEFGHÊÇÆ½ÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÓÐÒ»ÖÖÖ½µÄºñ¶ÈΪ0.1ºÁÃ×£¬ÈôÄÃÁ½ÕÅÖØµþÔÚÒ»Æð£¬½«Ëü¶ÔÕÛÒ»´Îºó£¬ºñ¶ÈΪ22¡Á0.1ºÁÃ×£®
£¨1£©¶ÔÕÛ2´Îºó£¬ºñ¶ÈΪ¶àÉÙºÁÃ×£¿
£¨2£©¶ÔÕÛ6´Îºó£¬ºñ¶ÈΪ¶àÉÙºÁÃ×£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªµ¥Ïîʽ-2x2yµÄϵÊýºÍ´ÎÊý·Ö±ðÊÇa£¬b£®
£¨1£©Çóab-abµÄÖµ£»     
 £¨2£©Èô|m|+m=0£¬Çó|b-m|-|a+m|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®£¨1£©Èçͼ£¬ÏÒAB°Ñ¡ÑO·Ö³É2£º7£¬¡ÏAOB=80¡ã£»
£¨2£©ÔÚ¡ÑOÖУ¬ÏÒABµÄ³¤Ç¡ºÃµÈÓÚ°ë¾¶£¬$\widehat{AB}$µÄ¶ÈÊýΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸