精英家教网 > 初中数学 > 题目详情

【题目】AB两组卡片共5张,A组的三张分别写有数字246B组的两张分别写有35.它们除了数字外没有任何区别

1随机从A组抽取一张,求抽到数字为2的概率;

2随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

【答案】1)解:P(抽到数字为2=;(2)不公平,理由见解析.

【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.

试题解析: 1P=

2)由题意画出树状图如下:

一共有6种情况,

甲获胜的情况有4种,P=

乙获胜的情况有2种,P=

所以,这样的游戏规则对甲乙双方不公平.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P为正方形ABCD的边BC上一动点(PBC不重合),连接AP,过点BBQAPCD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′BA的延长线于点M

(1)试探究APBQ的数量关系,并证明你的结论;

(2)AB=3BP=2PC,求QM的长;

(3)BP=mPC=n时,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一元二次方程中,若系数可在0123中取值,则其中有实数解的方程的个数是___ 个,写出其中有两个相等实数根的一元二次方程_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 m,n 相交于 O,所夹的锐角是 53°,点 P,Q 分别是直线 m,n上的点,将直线 m,n 按照下面的程序操作,能使两直线平行的是(

A. 将直线 m 以点 O 为中心,顺时针旋转 53° B. 将直线 n 以点 Q 为中心,顺时针旋转 53°

C. 将直线 m 以点 P 为中心,顺时针旋转 53° D. 将直线 m 以点 P 为中心,顺时针旋转 127°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图①ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点DF分别在边ACBC上,易证:AD=BF(不需要证明);

探究:将图①的正方形CDEF绕点C顺时针旋转αα90°),连接ADBF,其他条件不变,如图②,求证:AD=BF

应用:若α=45°CD=BE=1,如图③,则BF=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).

他们的各项成绩如下表所示:

修造人

笔试成绩/分

面试成绩/分

90

88

84

92

x

90

88

86

(1)直接写出这四名候选人面试成绩的中位数;

(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;

(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y= x2+bx+c与x轴、y轴分别相交于点A 1,0)、B(0,3)两点,其顶点为D

(1)求这条抛物线的解析式;

(2)若抛物线与x轴的另一个交点为E. 求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短。若存在请求出P点的坐标,若不存在说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,上一动点,,过,连接,过,下列有四个结论:的周长为定值,其中正确的结论有( ).

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(10)(30),现同时将点AB分别向上平移2个单位长度,再向右平移1个单位长度,得到AB的对应点CD,连接ACBDCD.

(1)直接写出点CD的坐标,求出四边形ABDC的面积;

(2)x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案