20£®ÔĶÁÏÂÃæµÄ²ÄÁÏ£¬»Ø´ðÎÊÌ⣺Èç¹û£¨x-2£©£¨6+2x£©£¾0£¬ÇóxµÄȡֵ·¶Î§£®
½â£º¸ù¾ÝÌâÒ⣬$\left\{\begin{array}{l}{x-2£¾0}\\{6+2x£¾0}\end{array}\right.$»ò$\left\{\begin{array}{l}x-2£¼0\\ 6+2x£¼0\end{array}\right.$·Ö±ð½âÕâÁ½¸ö²»µÈʽ×飬µÃx£¾2»òx£¼-3£®¹Êµ±x£¾2»òx£¼-3ʱ£¬£¨x-2£©£¨6+2x£©£¾0£®ÊÔÀûÓÃÉÏÊö·½·¨£¬Çó²»µÈʽ£¨x-3£©£¨1-x£©£¼0µÄ½â¼¯£®

·ÖÎö ÀýÌâÓ¦ÓõÄÊýѧµÀÀíÊÇ£ºÁ½ÊýÏà³Ë£¬Í¬ºÅµÃÕý£¬ÒìºÅµÃ¸º£¬½ø¶ø¿ÉµÃ£º$\left\{\begin{array}{l}{x-3£¾0}\\{1-x£¼0}\end{array}\right.¢Ù$»ò$\left\{\begin{array}{l}{x-3£¼0}\\{1-x£¾0}\end{array}\right.$¢Ú£¬ÔÙ½âÁ½¸ö²»µÈʽ×é¼´¿É£®

½â´ð ½â£º$\left\{\begin{array}{l}{x-3£¾0}\\{1-x£¼0}\end{array}\right.¢Ù$»ò$\left\{\begin{array}{l}{x-3£¼0}\\{1-x£¾0}\end{array}\right.$¢Ú£¬
½â²»µÈʽ×é¢ÙµÃ£ºÎ޽⣻
½â²»µÈʽ×é¢ÚµÃ£ºx£¼1£¬
¹Êµ±x£¼1ʱ£¬²»µÈʽ£¨x-3£©£¨1-x£©£¼0£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÒ»ÔªÒ»´Î²»µÈʽ×éµÄ½â·¨£¬¹Ø¼üÊÇÕýÈ·Àí½âÀýÌ⣬ÕÒ³öËùÓ÷½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èôxa-3xa-b+1=0ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬Çóa£¬bµÄÖµ£®
ÏÂÃæÊÇÁ½Î»Í¬Ñ§µÄ½â·¨£º
¼×Éú£º¸ù¾ÝÌâÒâµÃ$\left\{\begin{array}{l}{a=2}\\{a-b=1}\end{array}\right.$½â·½³Ì×éµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$
ÒÒÉú£ºÒÀÌâÒ⣬µÃ$\left\{\begin{array}{l}{a=2}\\{a-b=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=1}\\{a-b=2}\end{array}\right.$£¬½â·½³Ì×éµÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=1}\\{b=-1}\end{array}\right.$
ÄãÈÏΪÉÏÊöÁ½Î»Í¬Ñ§µÄ½â´ðÊÇ·ñÕýÈ·£¿ÎªÊ²Ã´£¿Èç¹û²»¶Ô£¬Çë¸ø³öÕýÈ·µÄ´ð°¸£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®£¨1£©¼ÆË㣺£¨$\frac{1}{2}$£©-2-6sin30¡ã-£¨$\frac{1}{\sqrt{7}-\sqrt{5}}$£©0+$\sqrt{2}$+|$\sqrt{2}$-$\sqrt{3}$|
£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{3x+2¡Ü2£¨x+3£©}\\{\frac{2x-1}{3}£¾\frac{x}{2}}\end{array}\right.$£¬²¢Ð´³ö²»µÈʽ×éµÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬BC=8£¬FΪADµÄÖе㣬µãEÊDZßABÉÏÒ»µã£¬Á¬½áCEÇ¡ºÃÓÐCE¡ÍAB£®
£¨1£©µ±¡ÏB=60¡ãʱ£¬ÇóCEµÄ³¤£®
£¨2£©µ±AB=4ʱ£¬Çó¡ÏAEF£º¡ÏEAF£º¡ÏEFD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½â²»µÈʽ×é$\left\{\begin{array}{l}{11-2£¨x-3£©¡Ý3£¨x-1£©}&{£¨1£©}\\{x-2£¾\frac{1-2x}{3}}&{£¨2£©}\end{array}\right.$²¢°ÑËüµÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÖÓÐ20ÔªºÍ50ÔªµÄÈËÃñ±Ò¹²9ÕÅ£¬¹²Öµ270Ôª£¬Éè20ÔªÈËÃñ±ÒÓÐxÕÅ£¬50ÔªÈËÃñ±ÒÓÐyÕÅ£¬Ôò¿ÉÁз½³Ì×éΪ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x+y=9}\\{50x+20y=270}\end{array}\right.$B£®$\left\{\begin{array}{l}{x+y=9}\\{20x+50y=270}\end{array}\right.$
C£®$\left\{\begin{array}{l}{x+y=270}\\{50x+20y=9}\end{array}\right.$D£®$\left\{\begin{array}{l}{x+y=270}\\{20x+50y=9}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁÐͼÐÎÖУ¬ÊÇÖÐÐĶԳÆÍ¼Ðε«²»ÊÇÖá¶Ô³ÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½â·½³Ì£º$\frac{1}{2}$£¨x-4£©-3£¨3x+4£©=-$\frac{15}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ê¹µÃº¯ÊýֵΪÁãµÄ×Ô±äÁ¿µÄÖµ³ÆÎªº¯ÊýµÄÁãµã£¬ÀýÈ磬¶ÔÓÚº¯Êýy=x-1£¬Áîy=0£¬¿ÉµÃx=1£®ÎÒÃǾÍ˵1ÊǺ¯Êýy=x-1µÄÁãµã£®ÒÑÖªº¯Êýy=x2-2mx-2£¨m+3£©£¨mΪ³£Êý£©£®
£¨1£©µ±m=0ʱ£¬Çó¸Ãº¯ÊýµÄÁãµã£»
£¨2£©Ö¤Ã÷£ºÎÞÂÛmÈ¡ºÎÖµ£¬¸Ãº¯Êý×ÜÓÐÁ½¸öÁãµã£»
£¨3£©É躯ÊýµÄÁ½¸öÁãµã·Ö±ðΪx1ºÍx2£¬ÇÒ$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=-$\frac{1}{4}$£¬Çó´ËʱmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸