精英家教网 > 初中数学 > 题目详情

【题目】在网络阅读成为主流的同时,进实体书店看书买书也成为一种新的时尚,重庆杨家坪某书店打算购进一批网络畅销书籍进行销售.该书店用12000元购进甲种书籍,用14400元购进乙种书籍,且购进甲乙两种书籍数量相同,甲的进价每本比乙少2元.

1)求甲乙两种书籍进价分别每本多少元?

2)随着抖音等网络视频软件的推广,这个书店很快成为网红书店,人流量越来越大.甲种书籍按每15元很快销售一空,书店决定再次购进甲种书籍进行销售.由于纸张成本增加,甲种书籍第二次比第一次进价每本增加20%,第二次购进甲种书籍总量在第一次购进甲种书籍总量的基础上増加了a%a0),为了让利于读者,第二次销售单价在第一次的基础上减少了%,结果第二次全部售完甲种书籍的利润达到3600元.求a的值.

【答案】(1)甲种书籍的进价为10元,乙种书籍的进价为12元;(2)a=50.

【解析】

1)设甲种书籍的进价为x元,乙种书籍的进价为(x+2)元,根据购进甲乙两种书籍数量相同列出方程并解答;
2)根据第二次全部售完甲种书籍的利润达到3600元列出方程,求解即可.

解:(1)设甲种书籍的进价为x元,乙种书籍的进价为(x+2)元,

根据题意得,

解得:x10

经检验:x10是原方程的根,

x+212

答:甲种书籍的进价为10元,乙种书籍的进价为12元;

2)根据题意得,

解得:a0a50

a0

a50

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0

(1)求证:无论m取任何实数时,方程恒有实数根;

(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2,且抛物线的开口向上时,求此抛物线的解析式;

(3)在坐标系中画出(2)中的函数图象,分析当直线y=x+b与(2)中的图象只有两个交点时b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A为平面直角坐标系第一象限内一点,直线y=x过点A,过点AADy轴于点D,点By轴正半轴上一动点,连接AB,过点AACABx轴于点C.

(1)如图,当点B在线段OD上时,求证:AB=AC

(2)①如图,当点BOD延长线上,且点Cx轴正半轴上, OAOBOC之间的数量关系为________(不用说明理由)

②当点BOD延长线上,且点Cx轴负半轴上,写出OAOBOC之间的数量关系,并说明原因.

(3)直线BC分别与直线AD、直线y=x交于点EF,若BE=5CF=12,直接写出AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是(  )

A. 4mB. 2m+nC. 4nD. 4mn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD 内接于⊙OBD是⊙O的直径,过点A作⊙O的切线AECD的延长线于点EDA平分∠BDE

1)求证:AECD

2)已知AE=4cmCD=6cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

1)在这次调查中,喜欢篮球项目的同学有   人,在扇形统计图中,乒乓球的百分比为   %,如果学校有800名学生,估计全校学生中有   人喜欢篮球项目.

2)请将条形统计图补充完整.

3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为ab,其中BCE在一条直线上,G在线段CD上,三角形AGE的面积为S.

(1)①当a=5b=3时,求S的值;

②当a=7b=3时,求S的值;

(2)从以上结果中,请你猜想Sab中的哪个量有关?用字母ab表示S,并对你的猜想进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点 A、与y轴交于点B,连接AB

1)求证:P为线段AB的中点;

2)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若代数式(4x2mx3y4)(8nx2x2y3)的值与字母x的取值无关,求代数式(m22mnn2)2(mn3m2)3(2n2mn)的值.

查看答案和解析>>

同步练习册答案