【题目】如图,为正方形的边的延长线上一动点,以为一边做正方形,以为一顶点作正方形,且在的延长线上(提示:正方形四条边相等,且四个内角为)
(1)若正方形、的面积分别为,,则正方形的面积为 (直接写结果).
(2)过点做的垂线交的平分线于点,连接,试探求在点运动过程中,的大小是否发生变化,并说明理由.
【答案】(1);(2)的大小不会发生变化,理由见解析.
【解析】
(1)先通过全等,得到EF=CP,通过勾股定理求=,则正方形的面积===
(2)先通过证明,再通过正方形的性质得到,再通过证明得到=45°,所以的大小不会发生变化.
(1) ∵四边形ABCD、四边形EFGH、四边形DPEM是正方形
∴DP=PE,∠DPE=90°,∠BCD=90°,∠EFG=90°
∴∠PCD=∠EFP=90°,∠DPC+∠PDC=90°, ∠EPF+∠DPC=90°,
∴∠PDC= ∠EPF
∴△CDP≌△FEP
∴EF=CP
∵在Rt△CDP中,,正方形的面积==a,正方形的面积==
∴正方形的面积===
(2)的大小不会发生变化,理由如下,
平分
在正方形中,
的大小不会发生变化.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使三角形AMN周长最小时,则∠MAN的度数为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行羽毛球比赛,甲发出一个十分关键的球,出手点为,羽毛球距地面高度(米)与其飞行的水平距离(米)之间的关系式为.如图,已知球网距原点米,乙(用线段表示)扣球的最大高度为米,设乙的起跳点的横坐标为,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则的取值范围是( )
A. . B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)请添加一个条件使四边形BEDF为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图9的两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生;
(2)请将条形统计图补充完整;
(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC= °,∠DEC= °;点D从B向C运动时,∠BDA逐渐变 (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宝安区某街道对长为20千米的路段进行排水管道改造后,需对该段路面全部重新进行修整,甲、乙两个工程队将参与施工,已知甲队每天的工作效率是乙队的2倍,若由甲、乙两队分别单独修整长为800米的路面,甲队比乙队少用5天.
(1)求甲队每天可以修整路面多少米?
(2)若街道每天需支付给甲队的施工费用为0.4万元,乙队为0.25万元,如果本次路面修整预算55万元,为了不超出预算,至少应该安排甲队参与工程多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的说理过程:如图,在四边形中,,分别是,延长线上的点,连接,分别交,于点,.已知,.对和说明理由.
理由:(已知),
(______),
(等量代换).
(______).
(______).
(______),
(______).
(______).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com