精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.
(Ⅰ)求过B,C两点的抛物线y=ax2+bx﹣1解析式;
(Ⅱ)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理由.

【答案】解:
(Ⅰ)联立两直线解析式可得
解得
∴B点坐标为(﹣1,1),
又C点为B点关于原点的对称点,
∴C点坐标为(1,﹣1),
∵直线y=﹣2x﹣1与y轴交于点A,
∴A点坐标为(0,﹣1),
设抛物线解析式为y=ax2+bx+c,
把A、B、C三点坐标代入可得
解得
∴抛物线解析式为y=x2﹣x﹣1;
(Ⅱ)①当四边形PBQC为菱形时,则PQ⊥BC,
∵直线BC解析式为y=﹣x,
∴直线PQ解析式为y=x,
联立抛物线解析式可得
解得
∴P点坐标为(1﹣ ,1﹣ )或(1+ ,1+ );
②当t=0时,四边形PBQC的面积最大.
理由如下:
如图,过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,

则S四边形PBQC=2SPBC=2× BCPD=BCPD,
∵线段BC长固定不变,
∴当PD最大时,四边形PBQC面积最大,
又∠PED=∠AOC(固定不变),
∴当PE最大时,PD也最大,
∵P点在抛物线上,E点在直线BC上,
∴P点坐标为(t,t2﹣t﹣1),E点坐标为(t,﹣t),
∴PE=﹣t﹣(t2﹣t﹣1)=﹣t2+1,
∴当t=0时,PE有最大值1,此时PD有最大值,即四边形PBQC的面积最大
【解析】(Ⅰ)首先求出A、B、C三点坐标,再利用待定系数法可求得抛物线解析式;(Ⅱ)①当四边形PBQC为菱形时,可知PQ⊥BC,则可求得直线PQ的解析式,联立抛物线解析式可求得P点坐标;②过P作PD⊥BC,垂足为D,作x轴的垂线,交直线BC于点E,由∠PED=∠AOC,可知当PE最大时,PD也最大,用t可表示出PE的长,可求得取最大值时的t的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习了三角形全等的判定方法和直角三角形全等的判定方法后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情况进行研究.

初步思考我们不妨将问题用符号语言表示为:在ABCDEF中,AC=DF,BC=EF,,然后,对进行分类,可分为是直角,钝角,锐角三种情况进行探索.

深入探究)(1)当是直角时,如图①,在ABCDEF中,AC=DF,BC=EF,,根据 可以知道.

(2)当是钝角时,如图②,在ABCDEF中,AC=DF,BC=EF,,且都是钝角,求证:.

(3)当是锐角时,在ABCDEF中,AC=DF,BC=EF,,且都是锐角,请你用尺规在图③中作出DEF,使DEFABC不全等(不写做法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为 ,则HD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图EHGN在同一直线上EFG≌△NMHF和∠M是对应角.在EFGFG是最长边.在NMHMH是最长边.已知EF=2.1 cm,EH=1.1 cm,HN=3.3 cm.

(1)写出其他对应边及对应角;

(2)求线段MN及线段HG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑车从家出发,先向东骑行1km到达A村,继续向东骑行4km到达B村,然后向西骑行8km到达C村,最后回到家.

1) 以快递公司为原点,以向东方向为正方向,用1 cm表示1 km,画出数轴,并在数轴上表示出ABC三个店的位置;

2C店离A店有多远?

3) 快递员一共骑行了多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD中,GF分别为ADBC的中点,将纸片折叠,使D点落在GF上,得到△HAE , 再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AFEF , 已知HEHF.下列结论:①△MEH为等边三角形;②AEEF;③△PHE∽△HAE;④

其中正确的结论是
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A在数轴上所对应的数为﹣2

1)点B在点A右边距A4个单位长度,求点B所对应的数;

2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点 B 以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求AB两点间距离.

3)在2)的条件下,现A点静止不动,B点再以每秒2个单位长度沿数轴向左运动时,经过多长时间AB两点相距4个单位长度.

查看答案和解析>>

同步练习册答案