精英家教网 > 初中数学 > 题目详情

【题目】如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.

【答案】
(1)证明:如图1,连接OB,

∵AB是⊙0的切线,

∴OB⊥AB,

∵CE丄AB,

∴OB∥CE,

∴∠1=∠3,

∵OB=OC,

∴∠1=∠2,

∴∠2=∠3,

∴CB平分∠ACE


(2)解:如图2,连接BD,

∵CE丄AB,

∴∠E=90°,

∴BC= = =5,

∵CD是⊙O的直径,

∴∠DBC=90°,

∴∠E=∠DBC,

∴△DBC∽△CBE,

∴BC2=CDCE,

∴CD= =

∴OC= =

∴⊙O的半径=


【解析】(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式 ,列方程可得结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是(  )

A.线段AE的中垂线与线段AC的中垂线的交点
B.线段AB的中垂线与线段AC的中垂线的交点
C.线段AE的中垂线与线段BC的中垂线的交点
D.线段AB的中垂线与线段BC的中垂线的交点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是线段AB的中点,CD平分,CE平分,CD=CE.

(1)求证:

(2)若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y= 的图象上.若点B在反比例函数y= 的图象上,则k的值为(
A.﹣4
B.4
C.﹣2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线经过点

1求直线的解析式

2若直线与直线相交于点求点的坐标

3根据图象直接写出关于的不等式的解集

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.
(Ⅰ)求过B,C两点的抛物线y=ax2+bx﹣1解析式;
(Ⅱ)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AB,用尺规作∠ABC=90°,作法如下:

小明的作法:(1)分别以A、B为圆心AB长为半径画弧,两弧交于点P;(2)以P为圆心,AB长为半径画弧交AP的延长线于C;连接AC,则∠ABC=90°

(1)请证明∠ABC=90°;

(2)请你用不同的方法,用尺规作∠ABC=90°.

(要求:保留作图痕迹,不写作法,并用2B铅笔把作图痕迹描粗)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在海湾森林公园放风筝.如图所示,小明在A处,风筝飞到C处,此时线长BC为40米,若小明双手牵住绳子的底端B距离地面1.5米,从B处测得C处的仰角为60°,求此时风筝离地面的高度CE.(计算结果精确到0.1米, ≈1.732)

查看答案和解析>>

同步练习册答案