精英家教网 > 初中数学 > 题目详情

【题目】为了测量校园内一棵大树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计了如图的测量方案,把镜子放在离树(AB)8.7m的点E处,然后沿直线BE后退到点D,这时恰好在镜子里看到树顶点A,再用皮尺测量得DE2.7m,观察者眼睛距地面的高CD1.6m,请你计算树(AB)的高度.(精确到0.1m)

【答案】树(AB)的高度约为5.2m

【解析】解:根据反射定律得∠CEF∠AEFEF⊥BD,所以90°∠CEF90°∠AEF,即∠CED∠AEB.又CD⊥DBAB⊥DB

所以RtCEDRtAEB,所以

CD1.6mDE2.7mBE8.7m

所以,解得AB≈5.2m

所以树(AB)的高度约为5.2m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.

(1)求证:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是(  )

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实践与探究

在综合实践课上,老师让同学们以两个全等的三角形纸片为操作对象,进行相关问题的探究.如图1ABC≌△DEF,其中∠ACB=90°,A=30°AB=4.

1)请直接写出EF=

2)新星小组将这两张纸片按如图2所示的方式放置后,经过观察发现四边形ACBF是矩形,请你证明这个结论.

3)新星小组在图2的基础上,将DEF纸片沿AB方向平移至如图3的位置,其中点EAB的中点重合,连接CEBF.请你判断四边形BCEF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,

(1)求甲伸出小拇指取胜的概率;

(2)求乙取胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC DEF 中,给出下列四组条件:

AB=DE, BC=EF, AC=DF

AB=DE, B=E, BC=EF

③∠B=E, BC=EF, C=F

④∠A=D, B=E, AB=DF

其中能使ABCDEF 的条件有(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小敏的爸爸买了一张嘉峪关的门票,她和哥哥都想去,可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽取一张,然后将抽出的两张牌数字相加,如果和为偶数,则小敏去,如果和为奇数,则哥哥去.

(1)请你用列表或树状图的方法求小敏去的概率.

(2)哥哥设计的游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△中,垂直平分,垂足为点,交直线于点垂直平分,垂足为点,交直线于点,连接

(1)如图①,若100°,求的大小;

(2)如图②,若70°,求的大小;

(3)(90°),用含的式子表示的大小(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OBAC=160,有下列四个结论:双曲线的解析式为y=(x>0);②E点的坐标是(4,8);③sin∠COA=;④AC+OB=12,其中正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案