精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB=°,理由是:
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.

【答案】
(1)90;直径所对的圆周角是直角
(2)△EAD是等腰三角形.

证明:∵∠ABC的平分线与AC相交于点D,

∴∠CBD=∠ABE

∵AE是⊙O的切线,∴∠EAB=90°

∴∠AEB+∠EBA=90°,

∵∠EDA=∠CDB,∠CDB+∠CBD=90°,

∵∠CBE=∠ABE,

∴∠AED=∠EDA,

∴AE=AD

∴△EAD是等腰三角形.


(3)解:∵AE=AD,AD=6,

∴AE=AD=6,

∵AB=8,

∴在直角三角形AEB中,EB=10

∵∠CDB=∠E,∠CBD=∠ABE

∴△CDB∽△AEB,

= = =

∴设CB=4x,CD=3x则BD=5x,

∴CA=CD+DA=3x+6,

在直角三角形ACB中,

AC2+BC2=AB2

即:(3x+6)2+(4x)2=82

解得:x=﹣2(舍去)或x=

∴BD=5x=


【解析】解:(1)∵AB是⊙O的直径,点C在⊙O上, ∴∠ACB=90°(直径所对的圆周角是直角)(1)根据AB是⊙O的直径,点C在⊙O上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC的平分线与AC相交于点D,得到∠CBD=∠ABE,再根据AE是⊙O的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD是等腰三角形.(3)证得△CDB∽△AEB后设BD=5x,则CB=4x,CD=3x,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6,.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.
(1)求甲、乙两种糖果的价格;
(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒 个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.

(1)求抛物线的表达式;
(2)如图2,当t=1时,求SACP的面积;
(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.
①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;
②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分图形的面积为(
A.4π
B.2π
C.π
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)

查看答案和解析>>

同步练习册答案